
AD-A11Z 1'49 ALABAMA UNIV IN HUNTSVILLE SCHOOL OF SCIENCE AND ENG-ETC FIG 1'4/2
ELECTRONIC TARGET SIGNAL GENERATOR (ETSG) SOFTWARE DEVELOPMENT. 1W
OCT 81 P F PRITCHETT, N A KHEIR DAAHI-81-0 AGGA

UNCLASSIFIED UAH-296 DRSMI-RD-CR-82 '4 NL* 2 flflfflfllflfflfl l



pll'.

BIN IHU 111 mb



TECHNICAL REPORT RD-CR-82-4

ELECTRONIC TARGET SIGNAL GENERATOR (ETSG)
SOFTWARE DEVELOPMENT

Paul F. Pritchett and N. A. Kheir
The University of Alabama in Huntsville
Huntsville, Alabama

October 1981

Approved for pubic reise; tisnbution wtinted

Fqedewtc3ne ^rwenml, ^Aabma 3 9
Prqmdfor:

Systems Simulation and Development Directorate
US Army Missile Laboratory

Contract DAAHO 1-81 -D-A006 D T IC

1982

FOI tI, I JUL 79 PRfVOU 0110 WTH IS O5LTE

(.I



-"1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE Dolen De. Sfotnu

It'V#' La J ur Atr I~d~t" 0An READ ISTRUCTIONS -

REPORT D ENTATION PAGELET FORM
'. REPORT NUMSER 2. GOVT ACCESSION NO S. RECIPIENT'S CATALOG NUMBER

RD-CR-82-4 &A
4. TITLE (and Subtfel.) S. TYPE OF REPORT a PERIOD COVERED

ELECTRONIC TARGET SIGNAL GENERATOR (ETSG) Technical Report
SOFTWARE DEVELOPMENT S. PERFORMING ORG. REPORT NUMBER

UAH Report No. 296
7. AUTHR(ae) S. CONTRACT OR GRANT NUMBER(*)

Paul F. Pritchett and DAAH01-81-D-A006

N. A. Kheir (Principal Investigator) Delivery Order 0009

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
School of Science and Engineering AREA G WORK UNIT NUMBERS

The University of Alabama in Huntsville
Huntsville, AL 35899

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Commander, US Army Missile Command October 1981
ATTN: DRSMI-RPT 13. NUMBER OF'PAGES
Redstone Arsenal, AL 35898 131

I'. MONITORING AGENCY NAMES ADDRESS(If dtifervt IMn Controllint O1ffce) IS. SECURITY CLASS. (of thle rport)

Commander, US Army Missile Command Unclassified
ATTN: DRSMI-RD
Redstone Arsenal, AL 35898 s.. OECLASSIFiCATION/OOWNGRAOIMG

SCHEDULE

IS. DISTRIBUTION STATEMENT (of Of* Report)

Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (of the abestrat entered In block 20, It different from Report)

II. SUPPLEMENTARY NOTES

IW. KEY WORDS (Continue on revoo elda If necesa-y And Identity by block number)

Electronic Target Signal Generator Initialization

Software Engineering
Simu lat ion
Parameters

R& ABSTAC? (.TMaf r,=en. N n.eemy ~ Ift.ir by block ,mber)

This report documents the study of Electronic Target Signal Generator
(ETSG) Software. It is intended to provide a reference for ETSG operation and
development.

Chapter one introduces the concept and function of the ETSG. Chapter
two outlines the initialization software and chapter three describes the
real-time or target CPU firmware. Chapter four contains conclusions and
rornnmm"m "'a.n ft-" f.t.o-trt-uni-Itr

i r 1043 mITsOoUImovessIOsOLETE UNCLASSIFIED

SECURITY CLASSIFICATION Ol THIS PAGE (Whm 0to enteted)



IIW' 1.AKK TWTRDS

PECUVATY CLASSIFICATION OP THIS _PAWUhM,, DeM Ea

Appendices one through eight contain information about program
variables, parameters, subroutines, and algorithms. Appendix nine is a
listing of a BASIC program which was developed to aid in doing ETSG-related
calculations. Appendices ten through twelve are operating instructions.
Appendix thirteen is a listing of ETSG diskette files.

UNCLASSIFIED

SECURITY CLASSIICATION OF THIS PAGE(WW. Does Eatee40



PREFACE

This technical report is prepared by Paul F. Pritchett, Research

Associate, under the supervision of Dr. N. A. Kheir, Principal Inves-

tigator and Associate Professor of Electrical Engineering, The Univer-

sity of Alabama in Huntsville. The purpose of this report is to

provide documentation of Electronic Target Signal Generator (ETSG) soft-

ware and firmware (software programmed on PROMs).

This documentation effort is in accordance with requirements

specified in Delivery Order #0009 of MICOM Contract Number DAAH-01-81-D-

A006.

The authors acknowledge with appreciation the assistance and

technical support of Don Dublin, contract technical monitor at

MICOM, Robert Burt, Research Associate, UAH, Donn Hall, and Don Sprinkle

of UAE, and G. R. Loefer, James Randolph, M. J. Sinclair, T. N. Long,

and C. E. Barnett of the Georgia Institute of Technology, Engineering

Experiment Station, Atlanta, Georgia.

The views and conclusions expressed in this document are those

of the authors and should not be interpreted as necessarily representing

the official policies, either expressed or implied, of the U. S. Army

Missile Command.

AceeSioin For

SF:."'rino

t i



TABLE OF CONTENTS

PREFACE

CHAPTER ONE: ETSG Concept and Function ....... .............. 1

1.0 Introduction ........... ....................... 1

1.1 Overview of the ETSG ......... ................... 2

CHAPTER TWO: The Initialization Processes and Codes .... ........ 5

2.0 Introduction .......... .. ...................... 5

2.1 Simulation Initialization Parameters ..... ........... 7

2.2.1 NDOS ............. .......................... 9

2.2.2 ETSG ......... .. .......................... . 11

2.2.3 SEEK ........ ... .......................... . 17

2.2.4 ETARG .......... .......................... ... 30

2.2.5 PULSEJ .......... ......................... ... 39

2.2.6 FLARE .......... ......................... ... 45

2.2.7 RUNETSG .......... ......................... ... 49

CHAPTER THREE: Real-Time Computer Model (Target CPU Software) . . 52

3.0 Introduction ......... ....................... ... 52

3.1 Target CPU Code ......... ...................... ... 54

CHAPTER FOUR: Conclusions and Recommendations .... ........... 

REFERENCES: .............. ............................ 6"1

APPENDICES

Appendix I Target Coordinate Variables

Appendix II Initialization Interface Variables

Appendix III System Flags

Appendix IV Target Parameters

Appendix V Intensity Data

Appendix VI Seeker Data

Appendix VII Field of View Data

Appendix VIII Initialization Subroutine

ii



TABLE OF CONTENTS (Cant' d)

APPENDICES (Cont'd)

Appendix IX ETSG.BAS

Appendix X ETSG Operating Instructions

Appendix XI idDOS

Appendix XII M46800 EDITOR

Appendix XIII Diskette Piles



CHAPTER ONE

ETSG CONCEPT AND FUNCTION

1.0 Introduction

The author's objective in this document is to present a comprehensive

survey of the ETSG software and firmware. This study is intended to pro-

vide a reference for ETSG operation and to aid in trouble-shooting and the

continued development of the ETSG.

Chapter One is a general description of the ETSG with respect to its

function, application, attributes, and limitations.

The initialization software is examined in Chapter Two. This chapter
contains a glossary of the input data which the system operator supplies

to the ETSG. This data consists of seeker parameters for the particular

seeker being simulated, target parameters for each target, and field of

view background information. Flow-charts and equations, are provided to

explain the process by which the Initialization Processor (IP) interface

variables are generated from the input data.

After the initialization phase is completed and the ETSG is in "run"

mode, the IP interface variables are manipulated by the target Central

Processing Unit (CPU). The operations performed by the target CPUs are

the topic of Chapter Three. The target CPUs receive dynamic data from

the CDC 6600 via the Direct Cell Buffer (DCB). Real-time calculations are

performed on the IP interface variables and the Direct Cell (DC) interface

variables. Real-time information flow is delineated in the flowcharts

at the end of Chapter Three.

Appendices I through VIII contain a glossary of variables, programs,

and subroutines. Appendix IX is a listing of the BASIC program used to

do number base conversions and to emulate some of the internal processes

of the ETSG. A programmed approach to operating the ETSG is found in

Appendix X. A summary of commonly used MDOS and 6800 EDITOR commands

comprises Appendices XI and XII respectively. Appendix XIII is a list of

all ETSG related program files and the discs on which these files reside.

I



1.1 Overview of the ETSG

The Electronic Target Signal Generator (ETSG) is a specialized

hybrid computer which, when given the proper initial and dynamic input

data, will generate an analog voltage which simulates the detector

output of a variety of electro-optical seekers. Redeye, Stinger, Stinger-

POST as well as postulated electro-optical threat seekers may be simu-

lated with the ETSG.

As many as twenty sources of specified shape, size, spatial orien-

tation, spatial position, intensity, and intensity gradient can be

created and controlled for the simulation of a particular target/

background/countermeasure scenario.

The sources may represent simple targets, complex targets made up

of more than one source, infrared flares, and pulsed jammers.

Complex targets such as aircraft can be constructed from five

sources, one each for the fuselage, canopy, and plume, and two sources

to represent the wings. These five sources are assigned a single control

point and a single set of target coordinates, aspect angle, and orien-

tation angle are calculated and transmitted to the ETSG independently

for all five sources. The ETSG then uses this data to fly the five

sources as one.

Two spectral bands are available for source designation. Band one

is unipolar and band two is bipolar.

The ETSG supplies independent outputs for each of the two spectral

bands. Output polarity may be reversed by a hardware switch on the

final digital to analog converter board which interfaces with the seeker

electronics.

Non-expendable pulsed-jammers may be designated as part of a

complex target.

Flare sources are controlled independently. Coordinates are cal-

culated by the CDC-6600 with flare initial conditions equal to those

of the dispensing aircraft and new positions are calculated from aero-

dynamic drag equations. Refer to Fig. 1 for a functional block diagram

of the simulation subsystems,

2



Lai

I4A

I-C)

0r Ci

C)-

0 C0

>-'-

IAA (Doc
LI

0zLJC
0= C

0L

/L

Figure 1: SiuaixSbytm

LL) C3



Each flare is turned on by a command from the CDC-6600 and may be

recycled after the flare has dropped beyond the tracking field of view.

The operator's console and display are used to initialize the

simulation and to display the dynamic position of the seeker field of

view (FOV). The simulation must be initialized for seeker, target, flare,

and pulse-jammer parameters. After initialization dynamic target/source

data is transferred to the ETSG from the CDC-6600 via the Direct Cell

Interface. With this information the ETSG generates a memory map of

the seeker image plane. This image plane is then convolved with the

seeker scan pattern. For scan patterns other than reticles, scan

signals must be supplied from a source external to the ETSG.

The digital signal which results from the convolution of the seeker

image plane with the seeker scan pattern is converted to an analog

signal, ripple filtered, and output as the simulated detector signal.

This signal passes through the seeker (bread-board) preamplifiers

and is processed to generate the gyro procession command.

The AD-4 analog computer uses the procession command to produce

guidance commands. The CDC-6600 calculates new air frame coordinates

from the guidance commands.

The CDC-6600 communicates the updated target image plane coordinates

to the ETSG via the Direct Cell Interface.

For a more detailed description of ETSG hardware subsystem refer to

"Electronic Target Signal (ETSG): Hardware Development" (10) written by

Robert Burt, Research Associate, The University of Alabama in Huntsville

(to appear).

Other documents containing i-formation relative to the ETSG are

listed in the reference portion of this document.

4



CHAPTER TWO

THE INITIALIZATION PROCESSES AND CODES

2.0 Introduction

During initialization of the ETSG, parameters which define a given

seeker and particular targets are entered. The ETSG generates a reference

image which is stored in Random Access Memory (RAM) for each source.

The target lookup RAM is a 64 x 64 block of 8 bit memory for each

target. The values stored in RAM are normalized so as to provide the

highest resolution map that the target will require during a given scenerio.

This reference is scaled in size, intensity and orientation during the

run to simulate the target signature for various combinations of the dynamic

parameters.

The flowchart in Figure 1 shows the main programs which perform the

initialization process. Each of these programs is discussed individually

in the following portions of this chapter. The input parameters used by

the initialization processor are defined in Section 2.1.

5



41i

4

-4

NN

-4

AC



2 .1 Simulation Initialization Parameters

The input parameters for the initialization phase are described in

Table I. The variables which are internal to the initialization software

are listed in Appendices III through VII.

7



Table I

SIMULATION INITIALIZATION PARAMETERS

INITIAL INPUTS

SEEKER PARAMETERS

Type Rosette, Conical or Center Spun

FOV Scaled to IFOV

Blur 0.5 mrad. Minimum

NEFD Any Value

SNR for Track 1 to 1010

Reticle Scan Rate 100 rps + 20 rps

System Responsivity Any Value

SOURCE PARAMETERS

Shape Elliptical, Rectangular, or
Triangular

Size Any Size (Linear Dimensions)

Aspect Ratio 1:1 to 32:1

Intensity Gradients Programmable

Spectral Bands Any Two

Intensity Polarity Plus or Minus

Programmable Intensity Complex

Maximum Range Meters

Minimum Range Meters

PULSE JAMMER

Rep Rate 20 kHz Maximum

Sweep Time Scan Rate + 20%

Duty Cycle Maximum 50%

Period 1.6 Sec Maximum

FLARES

Intensity vs. Time 20 Seconds Maximum

8



2.2.1 M6800 Diskette Operating System (MDOS)

The M6800 Diskette Operating System (MDOS) is an interactive

operating system that obtains commands from the system console. These

commands are used to move data on the diskette, to process data, or

to activate user-written processes from diskette.

In MDOS, a diskette file is a set of related information that is

recorded more or less contigously on the diskette. The information

can be actual machine instructions that comprise a command or a user

program. The information can also be textual data, object program data,

or any of the forms described in the following discussion of file

name conventions.

The standard format for specifying file names, suffixes, and

logical unit numbers is:

< file name > . < suffix > < logical unit number >

where the period (.) and colon (:) serve to delimit the start of the

suffix and logical unit number fields, respectively.

Logical unit numbers identify the drive that contains the file.

SiTce each diskette carries with it its own directory, different files

with identical names and suffixes can reside on different diskettes.

The following is a list of suffixes and the file type specified by

each.

Suffix Implied Meaning

AL Assembly listing fiie

CF Chain Procedural file

CM Command file

ED EDOS - converted file

LO Loadable memory - image file

LX EXbug loadable file

RO Relocatable object file

SA ASCII source file

SY Internally - used system file

9



To initialize MDOS power must first be applied to the EXORciser

and to the diskette drive unit. No diskette should be in the drive

while power is being turned on or off on either the drive or the EXOR-

ciser. Once the power is on, the following steps must be followed:

1. EXbug must be initialized and configured for the proper speed

of the system console. If power has been turned on for the first time,

EXbug initialization is automatically performed by the power-up interrupt

service routine in EXbug. If power is already on and MDOS is to be re-

initialized, then either the ABORT or RESTART pushbuttons on the EXORcisers

front panel must be depressed to initialize EXbug. The prompt "EXBUG

V. R." will be displayed by EXbug indicating it is waiting for operator

input. "V" indicates the version and "R" the revision number of the

EXbug monitor in the system.

2. An MDOS diskette (one shipped from Motorola or one that has

been properly prepared by the user must be placed in drive zero. The

door on the drive unit must then be closed in order for the diskette

to begin rotating.

3. The EXbug I command "MAID" must be entered. An asterisk (*)

prompt will be displayed once MAID has been activated.

4. The MAID command "E800;G" must be entered. This command will

give control to the diskette controller at the specified address. The

controller will initialize the drive electronics and then proceed to

read the Bootblock into memory. Once the Bootblock has been loaded,

control is transferred to It. The Bootblock will then attempt to load

into memory the remainder of the resident operating system.

During ETSG initialization the ETSG Supervisory Program is executed

from MDOS by typing ETSC and a carriage return at the system console.

10



2.2.2 ETSG Supervisory Program

The ETSG Supervisory Program is the main driver for all the ETSG

software. It initializes all hardware and controls the flow of all

ETSG software execution. The ETSG main driver calls the subroutine,

CKINIT, to perform a hardware check and if necessary, hardware initiali-

zation.

CKINIT checks the value stored in the Peripheral Interface Adapter

(PIA) at the extended memory address $CBF8 ($ indicates a hexadecimal

number, i.e. base 16). If the value is zero, then it is assumed that

a power up restart has been performed, a power failure has occurred,

or a hardware abort has occurred. The PIAs initialized by CKINIT and

the default values for these PIAs are shown in Table II.

After CKINIT the ETSG driver checks the system error flag. Based

on this information and the operator's response, a decision is made

in reference to these four options:

1. Initialize new system.

2. Perform error restart.

3. Restart with previous targets.

4. Continue initialization process with present system.

Then the initialization sequence continues either in the "auto

sequence" or "manual select" mode, depending on the operator's pref-

erence. Each phase of initialization is handled by a different program.

"Boot" transfers control from each program to the other. The flow chart

in Figure 2 gives a detailed description of the ETSG Supervisory

Program.

As one can see from the flow chart the next program in the initiali-

zation sequence is SEEK.

11



TABLE II PIAS TO INITIALIZE

PIA Initialization Default
PIA Address Values Values

TPIAS PIA $CBAO, $FF, $04, $00
PIA $CBA2, $FF, $04, $00
PIA $CBA&, $FF, $04, $00

PIA $CBA6, $FF, $04, $00

PIA $CBAD, $00, $04, $00
PIA $CBAE, $00, $04, $00

PIA $CBBO, $FF, $04, $00

PIA $CBB2, $FF, $04, $00

PIA $CBB4, $FF, $04, $00
PIA $CBB6, $FF, $04, $00

PIA $CBB8, $FF, $04, $00

PIA $CBBA, $FF, $04, $00

PIA $CBBC, $FF, $06, $00

PIA $CBBE, $FF. $04, $00
PIA $cBCO, $FF, $06, $00

PIA $CBC2, $FF, $04, $00

PIA $CBC4, $FF, $04, $00

PIA $CBC6, $FF, $04, $00
PTA $CBC8, $FF, $04, $00
PIA $CBCA, $FF, $04, $00

PIA $CBCC, $FF, $06, $00
PIA $CBC#, $FF, $04, $00

PIA $CBDO, $FF. $06, $01
PIA $CBD2, $FF, $06, $8E
PIA $CBD4, $FF, $04, $01

PIA $CBD6, $FF, $04, $3E

PIA $CBDB, $00, $00, $00

PIA $CBDA, $00, $00, $00
PIA $CBDC, $00, $00, $00

PIA $CBDE, $00, $00, $00

PIA $CBF8, $FF, $04, $00

PIA $CBFA, $FF, $04, $FF

12



TABLE 11 (CONT'D)

PTA Initialization Default
PIA Address Values Values

PIA $CBFC, $FF, $04, $00

PIA $CBFE, $FF, $04, $00

PIA $CEEC, $FF, $04, $00

PIA $CEEE, SFF, $04, $00

PIA $CFFO, $OF, $04, $00

PIA $CEF2 $OF, $04, $00

PIA $CEF4, $F7, $04, $00

PIA $CEFB, $FF, $04, $00

PIA $0000, $00, $00, $00

13



Roca systemonfile

Chec aipter l

F~ur 2 ETG upevsoary Prga in Driv.Poer). esa
14F800



2IDelete System Error

Ask operator:

Manual SeetoIuoSqec
m aiesqec

NwSystem or Use Old Tare Use old targets

Q _ . New System

Power up restart.
Set system flags = 0
Initialize CPUs
Delete system and seeker files

As' operator:
Manual select

Q /j Manual Select or Auto SequeneeJ

3 -- Auto sequence

Increment auto sequence number.
ISYF(3) =ISYF(3) + 1

• ITYPE -ISYF(3)

/Tell 
operator auto 

sequence/
number. Ask: .

Alxrt or Continue Sequence? / ....

Continue4

Where do you want to "Boot"

to. ITYPE = ?

Figure 2 (Continued)



"Boot" to the correct point in the initialization sequence, (determined

SEEK Boot" Delete systef
"Bootand seeker

jUES ie

sequenc num-

ISYF3 =

Figurear 2e(Cnstusd

16ot



4

2.2.3 SEEK

SEEK is an interactive FORTRAN program which reads the input data

to define a particular seeker. Calculations are performed to determine

for the particular seeker if the minimum system signal, SMNSY, times

seeker responsivity, ARES, exceeds the minimum DAC output voltage, VO.

When this condition is satisfied, the quantities;

IPBGL - Background Level

IPNSL - Programmable Noise Source Level

IAC10 - Analog Scale Factor Adjust

IBI - Exponent Scale Factor Adjust

MSIGN - Exponent Scale Factor Command

are calculated and stored in PIAs by the subroutine STAOC. The information

stored by STAOC is utilized as DAC controls for the analog boards.

The seeker data is then stored in a diskette file and control is re-

turned to the main driver, ETSG, via "Boot."

The flow chart in Figure 3 (pages 22--29) gives a more detailed account

of the processes performed by SEEK.

The "Notes on SEEK Calculations" at the end of this section is a step

by step listing with explanatory notes of the calculations performed by

SEEK.

The next program in the initialization sequence is ETARG.

Notes on SEEK Calculations:

*Indicates an input variable.

*FOVD - FOVI Field of view side to side (degrees).

*BLRM = FOV2 Blur diameter (M radian)

BLRR = BLRM*O.001 Blur diameter (rads.).

DPR = 57.2957795 (degree/rad.)

DPM - 0.057295775 (degree/m rad.)

BLRD - BLRM*DPM Blur diameter (degrees)

NPWN = 2

NFOV-IRND (NPWN*FOVD/BLRD) Number of discrete points in blur diameter,

Note: IRND is a function which rounds floating point numbers to integer

values. It always rounds so as to increase absolute magnitude.

FPPD=NFOV/FOVr Points per degree in field of view.

17



*TDPC = FOV3 Number of degrees per eount for target coordinate.

*IRCSW Rosette or Conscan switch.

If IRCSW = 1 load rosette seeker.

If IRCSW = 2 load conscan seeker.

TCDPC - 4.0/128.0 Minimum number of degrees per count for target coordinate.

Note TDPC 2 TCDPC

if not, default to TDPC = TCDPC.

FOVTEH - TDPC*256 Temporary variable

Note: FOVTEM Z FOVD

TCPPC - FPPD*TCDPC points in field of view per count of target coordinate

SBLRM = NPWN/FPPD/DPM Scaled blur diameter.

ICPC8 - FOVTEM/FOVI*256 Number of target coordinate counts across field of view.

Rosette minimum/maximum limits.

NPWN= 1 2 3

MINX 0 0 1

MINY 0 0 1

MAXX 63 62 62

MAXY 63 62 62

*MXSCR Maximum scan rate (Hertz)

MSCRD = 115 Minimum scan rate (Hertz)

*RNEFD(ICI) - RESP (ICH,2) Noise equivalent flux density (watts/cm2

Note: ICR is the channel number I or 2.

*SNRT (ICH) - RESP (ICH,5) Minimum signal to noise ratio to track.

*BKRD (ICH) = RESP (ICH,3) Background intensity at aperture 
(watts/cm

2

*ATTN (ICH) - RESP (ICH,4) Atmospheric attenuation coefficient (I/Km)

ANOIZ (ICH) - RNEFD (ICH) * ARES (ICH) Programmable noise level

SIGMN (ICH) - RNEFD (ICH) * SNRT (ICR) Minimum signal at aperture

*If NFSC (ICH) = 1 scale to NEFD.

If NFSC (ICR) # 1 then input:

*SIGMN (ICH) = RESP (ICH,7) Minimum system signal at aperture (watts/cm )

SMNSY = SIGMN (ICH) Minimum system signal at aperture

SMXSY = DYNRNG*SMNSY Maximum system signal at aperture (watts/cm 
2 )

VMIN = SMNSY * ARES (ICH) Minimum detector voltage.

C2 - VMIN/VO Seeker volts to DAC volts scale factor.

Note: VO = 6.1 E - 4 Minimum DAC voltage

CO - 64 Seeker irradiance to FNS.

CM2PM2 - 1.0 E - 4 Cm2/m2

Cm/s 18



C5(ICH) = CO*CM2PM2/SMNSY/NPWN/NPWN

Note: C2 - VMIN/VO > 1

RLOG2 = ALOG (2.0)

RL218 = 0.8480

Note: log(X) =log(2) = ~2(

MSIGN = 1

Note: In STAOC MSIGN is tested to determine if add to exponent occurs.

If VMIN/VO = I then;

IBI = 0

IAC1O = 1023

AT2 = 1.0

If VMIN/VO > 1 then;

TI = ALOG(C2)/RLOG2

Note: Ti = log 2 (VMIN/VO)

ITI = TI

Note: Change real to integer

FT = TI - ITI

If FTIO0.8480 then;

IBI = ITI + M51GN

IACIO = 1023

AT2 = POWER (2.0, FTI)

Note: POWER (a,x) = ax

If FTI > 0.8480 then

ITI = ITi + MSIGN

IBI = ITI

FT2 = FTI - I

AT2 - 2FT2

DZ = AT2*1024

IACIO = IRND (DZ)

If IACIO Z 1024 then;

IACIO = 1023

IBi = IT1 + MSIGN

IAClO - 1023

AT2 - 2 FTI

VBGMX - 10.0

VBGAB - BKRD (ICH) VBGMX*16383

IPBGL - IRND (VBGAB)

19



If IPBGL > 16383 then IPBGL = 16383

VNZAB = VMIN/VNZmX*255

IPNSL IRND (VNZAB)

If IPNSL > 255 then IPNSL - 255

ISKRCK - IFLAGS (22)

ISKRCK - 10 * (BLRM + FOVD)/(ARES(1)*SIGMN(2) + ARES(2) * SIGHN(l))

Analog Scale Factor Adjust IAC1O

TI = log 2(SNRT*RNEFD*ARES/6.1E-4)

ITI = Ti

Note: Real to integer

FTI = Ti - ITi

Note: Truncate whole number.

FT2 = FTl - 1

IACIO = 
F T 2 * 1024

If IQCIO Z 1024

then IACIO = 1023

Stored at:

CBCA

CBC8 for J channel

CBBA for K channel

CBB8

If Ftl _ RL 218 - 0.8480

then IAC1O = 1023

Background Level IPBGL

IPBGL = IRND (BKRD/40.0*16383)

If IPBGL ",16383 then

IPBGL - 16383

AND High byte with $3F

EOR High byte witi' $3F

EOR Low byte with FF

Store at:

CBCE for K channel

CBCC

CBBE for J channel

CBBC

20

AM



Note: Subroutine CBV in STAOS reorders the bits to compensate for a

hardware design problem.

Exponent Scale Factor Adjust IRl

IBl =16 * ln (RNEFD*SNRT*ARES/6.lE - 4)+ 1

AND with $FO

Store at:

CBBO for J channel

CBB4

CBC4 for K channel

Exponent Scale Factor Command MSIGN

MSIGN = 1

CBB2I2O for J channel

CBB6/20

CBC6/20 for K channel

Programmable Noise Source Level IPNSL

IPNSL =IRND(SNRT*RNEFD*ARES/5*255)

If IPNSL > 255

then IPNSL =255

CBC2 for K channel

CBCO for J channel

21



Start

New or Default Seeker /O rnfurSpp

Or previously created seeker9

Previously created seeker

ilame for input?

• ' Does
Seeker file Y Open Seeker

exitfile.

T 7;'ie notfound "7 .,
Directory?

Call DIR

Figure 3 SEEK

22



Rosette or Conscan?

IRCSW I or 2 Conscan

Rosette

Open default

Seeker file, IGOS.

Read, then close

seeker file.

Input FOVD -

Field of View degrees

side to side.

Input BLRM

Blur diameter in
m rad.

Calculate
NFOV-Number
of points in
FOV.

Figure 3 (Continued)

23

ILI



3 4

FOV too large
with current
blur diameter.

G -IE a~not eprsenttotl FV ,th crret. data:I

Figure 3 (Continued)

24



4 Rnunt TDPC 4112 o

ostar t oer

Fgre Cniud
2agtcoriae



MI[ 7

Send FOV information

to display CPU

I
Set Rosette Min/Max
limits for run time error

~flags.

Input Max, scan

r ate, MXSCR.

~Max,
allowable scan

rate? 8@

; I Scan rate too large

i ~ Figure 3 (Continued)

26



Input seeker static
parameters.

8 cbntrols f or
analog boards.

Call STAOC: to

load DAC controls
to PIAS.

Calculate seeker

checksum, ISKRCK.

[ Open, write, and
close seeker file, ISKR.

Figure 3 (Continued)
27



9

name already Y

N

Open, write seeker

data, and c1ose'file.

Fientfound.

Figure 3 (Continued)



('0

Read system

flags from IESY

ISYFUl) - 0

ISFY(40)=IRCSW-l for Rosette

Writeflags to

WieIESYI

"Boot" back to ETSG

Figure 3 (Continued)

29



2.2.4 ETARG

The interactive FORTRAN routine ETARG, controls the generation of all

simple and complex targets. ETARG specifics which targets are flares or

pulsed Jammers and also assigns target channels and polarities.

The general information flow in ETARG is depicted in the flowchart

in Figure 4 (see pages 32-38). A detailed account of the values calculated

in ETARG is presented in the "Notes on ETARG Calculations" at the end of this

section.

Notes on ETARG Calculations:

* Indicates an input variable

* TSZX - TRG(l) Target size X (meters).

* TAR = TRG (3) Target aspect ratio.

If TAR - 0 then TSZY = TSZX/TAR.

If TAR = 0 then

* TSZY TRG2 Target size Y (meters).

and

TAR - TSZX/TSZY

TAR > 1

* ISC - IFLAGS (3) Channel number

* IPOLTY - 1

If ISC - 2 then

* IPOLTY = + 1 or - 1 for UV targets.

* RJT - TRG (4) Target radiance (watts/steradian)

TATTN - ATTN (ISC)/1000 Atmospheric attenuation coefficient from SEEK.

RJTP = RJT - BKRD(ISC)*0000*EXP(TATTN)

RJTP - RJTP*IPOLTY Contrast Radiance (watts/steradian)

RJTP Z 0

RT - RJT/SIGMN (ISC)/10000

RT = SQRT (RT) Clear air track range (meters)

* RMAX - TRG(7) Maximum target range (meters)

DYNRNG - 3.57E9

TATTN = -ATTN (ISC)/1000*RMAX

SMNT - RJTP*EXP(TATTN) Minimum target signal

SNNT - SMNT/RMAX/RMAX/1000

30



I
SMXSY - DYNRNG*SIGMN(ISC) Maximum system signal.

AGS = SMNT/SV 'N(ISC)

AGS > 1

Ti = TSZX

IMAX = 64

PPM - (IMAX-I)/Tl Points/meter in TLR

*If the target is not a plane, ITSW2Z5,

then:

TI = TSZY*TSZY/4 +TSZX*TSZX

and PPM = (IMAX - l)/SQRT(Tl)

otherwise:

RCO = TSZX/BLRM*I000

RCI = TSZX/BLRM*l000*NPWN/(NPWN + 1)

RC2 = TSZY/BLRM*l000*NPWN/(NPWN + 1)

RMNR = BLRM/NPWN/PPM*I000 Range of 1 to 1 resolution. (meters)

*RMIN = TRG(8) Minimum target range (meters).

TALTN = -ATTN(ISC)/1000*(RMAX-RMN)

SMXV = SMNT*EXP(TATTN)

SMXV = SMXV*RMAX/RMIN*RMX/RMIN

ZA = SMXSY/SMXV

If ZA-- 1 System will overflow

ZA 7-128 Probable overflow

ZA l1608.5 Possible overflow

ZA-Z1608.5 No overflow

RKMX = 599.0/PPM Maximum value for key points (meters).

*RKXM = TRG(5) X key point (meters).

*RKYM = TRG(6) Y key point (meters).

*ITCLR - IFLAGS(10) Target color

*ISRVT = IFLAGS(lI) True target flag

*IPJ = IFLAGS(5) Pulse jammer flag

*IFL = IFLAGS(6) Flare flag

If IPJ 1 1 then ISYF(4) = 1

*IPRI from STTP Target priority

ID6 - IPRI + 6

ISYF (ID6) = 0

31

+_-- L ,, + . .. .. . . "---.MAMA...



If IFL - 1 then

ISYF(5) - 1

and ISYF(6) =ISYF(6) + 1

and ISYF (ID6) = 1

Clear intensity accumulators:

ZSUM(4) = 0

ZCNT(4) = 0

PMX(4) - 0

PMN(4) - 5.OE1O

Set point target view

CST =9.0

Note: INVERT Is a function which converts floating point numbers to the

ETSG internal Floating Point Number System (FNS).

ITMP - INVERT(CST)

This number goes to the point target lookup RAM.

RLOG2 - ALOG(2.O)

RFAVG - ZSUM(4)/ZCNT(4)

PAVG - RFAVG/9.o*PNN(4)

PHX(4), PMN(4), and PAVG are output at the console during initialization.

Equations for initialization interface variables listed below may be found in

Appendix II.

RRAN

15F.

ISF'

AL2E

FOVS

ACSF

PTSS

TGT1

32



Start

Initialize console
and communication
lines.

Ryea fle/y
dat : SY F itFR nGS, ir t

Figure : ETAR

Seeker f33



4

Call STTP; set
target type, priority
and flags.

IF 3 - 0Yes

Img

format? Yes

Input target

parameters.L 
- .,

Determine I robabiity

of accumulation
overflow.

Output probability
of overflow

61 2

Figure 4 (Continued)

34



2

gradient/average value Yes
New value for %MIN?

INo
Input:
Keypoints

Target color:

IFLGS(10)

True target?
IFAS(11)

Pulse jammer?

IFLAGS ()

Flare?
IFLAGS (6)

Figure 4 (Continued)

35



7SF(.

ISYF (4) = 1

Pulse jaimmer? YsISYF (6) = ISYF(6)
+ 1

ISYF (IPRI + 6)-1

ISYF(IPRI +'6) =0

Wrdte data to
system file.
ISYF (1-40)

Clear intensity

accumulators.I

Set point target view.

Figure 4 (Continued)
36



Save targets.

Process intensity

information

Output:

PMN, PMX, PAVG

Load aspect RAMs,
target CPUs, and
display CPU.

Load target CPU:
IP interface
variables.

Itt

Load display CPU

TGTI.

Figure 4 (Continued)

37

-



target? Y ess

to sfsemlil

ENo

Figure 4 (Continued)

38 
.



2.2.5 PULSEJ

PULSEJ is a FORTRAN program which generates the time history for a

given pulsed jammer. The pulsed Jammer is defined by the following input

parameters:

NPULSE - number of pulses

PDUTY - duty cycle (%)

SFREQ - start spin frequency

EFREQ - end spin frequency

STIME - sweep time

The pulsed jammer time history is generated by an iterative process

which increments time by a factor which is the reciprocal of the current

spin frequency. For each cycle the number of strobe "on" and strobe "off"

points is calculated and stored In memory. The strobe time history is

recorded in 32K bits of memory. Since the strobe "on/off" flag, JSIG,

is a FORTRAN integer, 64K bytes of storage is required.

Notes on PULSEJ Calculations

* denotes input variable.

* NPULSE Number of pulses

* PDUTY Duty cycle (per cent)

* SFREQ Start Spin Frequency(Hertz)

* EFREQ End frequency (Hertz)

* STIME Sweep time (Seconds)

SFREQ > 64

EFREQ > 64

If: (2*SFREQ*NPULSE-SFREQ0(2*PDUTY/100) > 1000 then frequency/NPULSE is

too high or PDUTY is too low.

DT = 1.0/32767 (cycle/bits)

DT is a scale factor which is used to divide sweep time into 32K bits.

DUTY = PDUTY/100.0

Converts % to fractions of a cycle.

39



II

SRATE - (EFREQ-SFREQ)/STIME

Average change in frequency per unit time.

NPARTS = 2*NPULSE-l

Number of parts in strobe history.

TIME = 0 Initialize time to zero.

CFREQ = SFREQ + SRATE*TIME Current frequency at any given point in time.

CT - l.O/CFREQ Current spin cycle time

NPTS = CT*DUTY/DT Strobe time per given cycle multiplied by total number

of points.

MPTS = (NPTS/NPARTS) + 0.5 The number of points that the strobe is "ont'

per spin cycle.

When JSIG(IP) = 0 strobe is "off"

When JSIG(IP) - 1 strobe is "on"

NPTS = CT*(I-DUTY)/DT The number of points that the strobe is "off" per

spin cycle.

TIME + CT/2 - STIHE SO Test to see if sweep time has been used up.

Refer to Fig. 5 for a functional diagram of the PULSEJ.

40



Initialize plotting package

Clear screen

Ring bell

system file,

Read ISYF(-40)

from IESY

f "Boot" back/

pulse Jaer to ETSG

flag is high,>No- 
/

generation routine.

, 
/Input:/

N PULSE - number of pulses.

SPUY - duty cycle (per cent j
SFRJEQ - start spin frequency (Hertz)
EFREQ - end frequency (Hertz) /

Figure 5 : PULSEJ



Is ~ Frequency/NPULSE

Y~DT Wait proesin

aculaitent

Ipust: nne

paamE- ete j

Set TIM 0

3 atpoesn

42aigrecu(latteed



Eeaepejammer history.

Grpis s de

tim uprd yet N

hiigu a reayCotnud

43$



N "Boot to

< Dos sste fil exstETSG

ISYF(1 = 0 to IESY

"fBoot" to

ETSG

Figure 5 (Continued)

44



2.2.6 FLARE

FLARE initializes the flare time history. The time history is entered

as up to twenty pairs of intensity and time data. One time history is used

for all sources designated as flares, but each individual flare may be

activated independently. The specified pairs of time and intensity data

are processed by the target CPUs to update the flare absolute intensity

during each frame. Refer to Fig. 6 for a functional diagram of the FLARE.

45



C D
Initialize console and

communication lines

IHIST(1-105)=O

Yes

Read ISYF( 5)

Fgr 6:Flare

spci6 dN



1 2

CPUewith flare

timto isory

3EYeisN

FigU 6it (Cotined

47



ISYF(l) =0

j ~. Write flare history

to IESY

"Bootvp

ETSG

Figure 6 (Continued)

48



2.2.7 RUNETSG

RUNETSG transfers control from the initialization processor to the

ETSG Hardware. It is the last program in the initialization sequence.

Refer to Fig. 7 for a functional diagram.

49



correc omncto

ETSG

Delete system file.

Set/Clear all
necessary hardware.

Figure 7 :RUNETSG

50



Display tagt wihtris

ETSG ready.

I RUNI

Call I'MDI "Post lMortem Dump"

Reload system

file and old targets.

"Boot"

Figure 7 (Continued)

51I;



CHAPTER THREE

REAL-TIME COMPUTER MODEL (TARGET CPU SOFTWARE)

3.0 Introduction

Target CPU Driver, TCD is the main driver for the ETSG target CPU. Its

rrimary purpose is to generate the coordinate values and step sizes for the

target loaders. For the derivations and memory locations of target coordinate

values and initialization interface variables calculated by the target CPU

code refer to Appendices One and Two respectively.

TCD has three modes of operation, RUN, DEBUG with PRESET, and DEBUG.

RUN Mode

While operating in RUN mode, the target CPU is fulfilling its primary

purpose. It is generally in this mode while the ETSG is running. While

in this mode, it will use the dynamic variables supplied by the DCB, the

static variables supplied by the IP, and some internal variables kept by

*TCD* and generate the target loader/intensity factor output values.

The steps involved are:

1. Wait till data is supplied by the DCB.

2. Generate intensity scale factor.

3. Generate target loader values.

4. If target still valid (inside FOV, no iia-ensity factor overflow,

and target valid from DCB), load calculated values into latches.

If target invalid, set target to point target outside FOV.

5. Go to step 1.

DEBUG with PRESET

If the debug target flag is set to 1, the target CPU will enter this

mode of operation. While in this mode, the CPU will set the static vari-

ables usually set by the IP, preset all necessary local variables, and

set up a block of memory for use of the debug target. The target CPU then

enters the debug target mode.

DEBUG Target Mode

While in debug target mode, the actions of the target are directed

by a block of memory. This block consists of 9 different variables:

1, 2) A rotation angle increment and period. These two numbers allow

the target to rotate CW or CCW at any desired speed.

52



3,.4) A range decrement and period. These two numbers allow the

target to *zoom* in and out (i.e., appear to grow and shrink)

at a selected speed.

5) A range overshoot limit. As the range decrement value is usually

positive, and the algorithm involved does not check for negative

ranges, it will appear that the target has flown through the

viewer. This value places a negative limit on the range.

6, 7) An aspect increment and period. These two allow the targets

aspect value to change with any desired rate and direction.

8) A delay factor. This value is a delay to be placed at the end

of any cycle. (Normally 0)

9) The control byte. This is the value that the DCB would usually

place in the control byte at address 7. It contains the go flag,

the flare flag, and an invalid target flag.

The steps involved are:

1) Delay for delay factor time.

2) If time period exhausted for rotation, change rotation angle by

indicated amount.

3) If time period exhausted for range, change range by indicated

amount.

4) If range is negative enough, reset range to positive value.

5) Ditto for aspect angle. If aspect angle went through edge value,

change rotation by 180 degrees.

6) Set control byte to specified value.

7) Pretend to be RUN mode target.

53



3.1 Target CPU Code

The following is a listing of the subroutines which constitute the

target CPU software. A brief description of each subroutine's function is

presented. Those variables operated on by each subroutine are designated

as "Entry" and those calculated are labeled "Exit." At the end of this

section is a flow chart which shows the interaction between these sub-

routines.

TCD - Target CPU Drive - TCD provides the main line processing and start

for the ETSG Target CPUs.

PRS - Preset - PRS clears all necessary internal variables to allow for

correct initialization processor interaction. It will also remove the target

from the field of view.

Exit (VALD, = 0, Not Valid

(DBUG) = 0, Not Debug

(CONT) = 0, Just in Case

(ERRF) = 0, No Errors Encountered Yet

(CYCL) = 0, No Cycles Finished Yet

Target outside of field of view

INT - Initialize, Preset, and Wait for Go - INT sets all variables to correct

assumed values and waits for a go signal from the DCB.

Entry (VALD) - Valid Target From IP

(DBUG) - Debug Target From IP

(FS) - Flare Status

FS - 0, Flare Turned Off

= 1, Flare Turned On

- FF, Flare Turned Off by Program

Exit Go Signal Cleared. Flare Pointer Set If Flare Turned On

Calls IFH

RCK - Check Point Target - RCK determines whether or not the target is a

point target. It also calls on L2R to calculate the range.

Entry (RRAN , RRAN + 1) = Resolution range (2 Bytes)

(RRAN , RRAN + 1) - Current Range (2 Bytes)

Exit (PT) = 00, If not a point target

01, If point target

(LR) = Log Base 2 (Range)

54

Lmom



Uses A, B

Calls L2R

IFH - Initialize Flare History - IFH Sets the pointers for the flare history

array.

Exit - (RC) = Repeat count for first value

(ST) = Step for first point

(IX) = Pointer for first point

(LS) = Current log output value

(TS) = (LS)

Uses A, X

L2R - Log Base 2 of the Range - L2R computes the log (Base 2) of the target

range. The algorithm is as follows.

1. Find the largest bit set--this is the power of two for the number

2. Extract the next 6 bits, these are used as a fractional log. This

entails a 64 byte lookup table

Entry (RANG, RANG + 1) = Range

Exit (LR + 0) = Interger (Log 2 (Range))

(LR + 1) = Fractional (Log 2 (Range))

Uses A, B, X, TO, Tl

ISF - Calculate Intensity/Range Scale Factor - ISF calculates the basic

intensity/range scaling factor. The ISF is determined by the following

equations:

1. For resolved targets: ISF = EXP (-ALPHA*RANGE)

2. For half-resolved targets: (Unimplemented) ISF - EXP(-ALPIIA*RANGE)/

RANGE

3. For unresolved targets: ISF = EXP(-ALPHA*RANGE)/RANGE**2

In addition to the range scale factor,flares have a time loss factor.

All calculations are based on the log (base 2) of the range. Conversion

from logs to the ETSG Floating Point Number System (FNS) is trivial because

the log is the FNS number to the first three bits, which is all that is necessary.

Entry - (ALZE) - Log2(E)*ALPHA

(ISFR) = Implied bias if resolved

(ISFP) - Implied bias if point target

55



Exit (ISFO) - ISF, FNS

Uses A, B, X, TO- TI, T2, T3

Calls TSF

TSF - Time Scaling Factor - TSF calculates the time scaling factor. This

is the value by which the TSF is to be decremented due to time (for flares)

Entry (RC) = Repeat Count for current LS value (ABPO)

(ST) = Current Sine Term (for corrections) (APBO)

(LS) = Log Scale Value (ABP8)

(TS) = Log Scale Value (Corrected) (ABPIO)

(IX) = Current Flare Index (into table)

Exit - All above values updated

(A, B) = TSF Value. (ABP8)

Uses A, B, X, T4, T5

CAV - Calculate Aspect Values - CAV sets the X key point depending upon

the current value of the aspect angle and determines the correct aspect

ratio RAM to use. It will perform a table look up in TKPT to find the

correct value of the keypoint.

Entry - (ASPC) = Aspect Angle

(PLUM) = Complex Target Flag

(PT) = Point Target Flag

Exit - (XK) = X key point

(YK) = Y key point

Uses TO, TI, T2, T3

CXY - Calculate X and Y Coordinates - CXY calculates the X and Y coordinates

of the keypoint for the TLR. This coordinate is just the Azimuth and

elevation scaled upward by a predetermined scale factor

Entry (AZIM) = Target Azimuth

(ELEV) = Target Elevation

(ACSF) = Elevation/Azimuth Scale Factor

Exit (XC, XC + 1) = X Coordinate ABP5

(YC, YC + 1) = Y Coordinate ABP5

Uses A, X

56



CSS - Calculate Step Size - CSS calculates the X and Y step sizes used by

the target loader to index into the target lookup RAM (TLR). These values

are independent of the aspect angle.

Entry (RANGE, RANGE + 1) = Range of target (2 Bytes)

(FOVS) = Field of View Scaling Factor

Exit (XM, XM + 1) = TLR Step Size X with respect to X

(XN, XN + 1) = TLR Step Size X with respect to Y

(YM, YM + 1) = TLR Step Size Y with respect to X

(YN, YN + 1) = TLR Step Size Y with respect to Y

Uses TO

Calls TSC

CZC - Calculate Target Map Zero Coordinate - CZC calculates the value of

the target map zero coordinate within the TLR coordinate system. The

equations used for the coordinate transdformation are:

1. X' = -(XC*XM + YC*XN - XK)

2. Y' = -(XC*YM + YC*YN - YK)

Where XC = X coordinate of target (scaled azimuth)

YC - Y coordinate of target (scaled elevation)

Entry (XM) = DELTA XM

(XN) = DELTA XN

(YM) = DELTA YM

(YN) = DELTA YN

(XK) = Key Point X

(YK) = Key Point Y

Exit (XO) = Target Map Zero X Coordinate

(YO) - Target Map Zero Y Coordinate

Uses A, B, X, TO-T7

Calls TSC

TSC - Sine/Cosine Calculation Routine - TSC calculates sin/cos values for

an angle. The angle is assumed to be an 8-bit positive number 0-255, which

corresponds to an angle of 0-360 degrees.

57



Entry (A) = Angle

Exit (SN, SN + 1) = Sin(A) ABP14

(CS, CS + 1) = Cos(A) ABPI4

Uses A, B, X, T3, T4, T5

TVT - Test Valid Target - TVT checks and insures that the target is in

fact valid. If not, TVT sets the target out of the field of view and

sets all step sizes to 0. This effectively removes the target from considera-

tion.

Entry (VT) = Valid Target Flag

0 - Not Valid

1 - If Valid

LTL - Load Target Loader - LTL transfers to the target loader the following

values:

1. The target map zero coordinate WRT to the TLR.

2. All four incremental values

3. Set aspect select values (13th latch)

4. Set complete bit (13th latch)

Uses A, B, X

ERR - Check Internal Errors - ERR performs a short self check to determine

if any detectable errors have occurred. It check the following:

1. The Multiplier

2. RAMs TO-T7

If an error is detected, the CPU is hung

Exit (CYCL) = (CYCL) + 1

(ERRF) = (ERRF) + Applicable error flags.

Refer to Fig. 8 for a functional diagram.

58



fSTqART

PRS

if Yes

T FS-1 IN

I:Nn Ret.",
a

RCK 
To C

To Scale Flare

ISF Return 
TSF

CAV

CXY

A/ Set r entation

Fin I )
CSS ;Return

SSet Targe
Map Or entatyion

CzC R7eturn

TVT

\t/ -

LTL

L 
ERR

-T

Figure 8 Target CPU Code

59



CHAPTER FOUR

CONCLUSIONS AND RECOMMENDATIONS

4.0 Conclusions and Recommendations

The ETSG Target CPU firmware is complete and totally functional.

The authors do not anticipate the need for firmware changes unless further

development necessitates alterations in the coordinate transformation on

target mapping algorithms. All changes made in Target CPU firmware as

well as changes in Initialization software subsequent to May 5, 1981 are

documented in the ETSG program listings and in the author's daily log.

The Initialization software has been revised from Motorola FORTRAN

revision number 2.20 to FORTRAN 3.10. Some "debugging" is required for

this most recent revision of the ETSG software.

It is our recommendation that the development of this software be

continued and that the diagnostic software presentl, in development be

completed.

60



REFERENCES

[1] Barnett, C. E. and Long, T. N., Integration of a Hybrid Simulation

for a Small Air Defense Missile, Georgia Institute of Technology,

Atlanta, Georgia, April 1980.

[2] Barnett, C. E., Long, T. N. and Wallace, C. T., Stinger-POST

Hybrid Simulation Integration (U), Georgia Institute of Technology,

Atlanta, Georgia, February 1981.

[3] Barnett, C. E., Simulation System Target Parameters and Logic

Definition, Georgia Institute of Technology, Atlanta, Georgia,

June 1980.

(41 Cantrell, Gerald and Kheir, N. A., A Digital Target Model for Use

With a Stinger-POST Guidance Simulation, Final Technical Report

The University of Alabama in Huntsville, Report No. 272, prepared

for System Simulation and Development Directorate, US Army Missile

Command, Redstone Arsenal, Alabama, Contract No. DAAK-40-79-D-0031,

Delivery Order #0004, January 1981.

[5] Hudson, Richard D., Jr., Infrared System Engineering, Wiley,

New York, 1969.

[6] Sinclair, M. J., Electronic Target Signal Generator (ETSG) Hardware

Design and Fabrication, Georgia Institute of Technology, Atlanta,

Georgia, April 1980.

[7] Sinclair, M. J., Electronic Target Signal Generator (ETSG) Integra-

tion and Test, Georgia Institute of Technology, Atlanta, Georgia,

March 1981.

[8] Sinclair, M. J. and Riley, G. E., Electronic Target Signal Generator

(ETSG), Design and Analysis, Georgia Institute of Technology, Atlanta

Georgia, May 1980.

[9] Wolfe, W. L. and Zissis, G. J., The Infrared Handbook, Environmental

Research Institute of Michigan, Michigan, 1978.

61



REFERENCES (Cont 'd)

(10] Burt, R., and Kheir, N. A., Electronic Target Signal Generator (ETSG):

Hardware Development, Final Technical Report, The University of

Alabama in Huntsville, Under preparation for System Simulation and

Development Directorate, US Army Missile Command, Redstone Arsenal,

Alabama, Contract No. DAAH-0I-81-D-AO06, Delivery Order #0004.

62



Appendix I

Tareet Coordinate Variables

Al *1



Variable Name Description Origin Location

XO Target Map Origin (TLR) CZC D051
D052

YO Target Map Origin (TLR) CZC D053

D054

XK X keypoint (TLR) CAV D055

D056

YK Y keypoint (TLR) CAV D057

D058

XC Current X Coordinate CXY D059

DO5A

YC Current Y Coordinate CXY DO5B

D05C

XM TLR Step Size X wrt. X CSS DO5D

DO5E

XN TLR Step Size X wrt. Y CSS DO5F

D060

YM TLR Step Size Y wrt. X CSS D061

D062

YN TLR Step Size Y wrt. Y CSS D063
D064

Al. 2



Notes On Target Coordinate Calculations

These notes and equations may be used to verify that correct numbers

are being calculated and stored in the target CPU RAM for target coordinate

calculations. Substitution of the appropriate IP input variables and

direct cell interface variables into the equations will generate correct

values for each coordinate variable. Scale factors for the hardware

multiply are absorbed into the equations. Care should be taken in applying

these equations in order that number base conventions are observed. All

numbers in the equations are decimal or base ten numbers. All results

must be converted to hexadecimal.

A

AI. 3I



CX!

The subroutine LSHL operates on FNUMB and ISHFT and yields the results

IRSLT and ILEFT.

FNUMB = IRND(NPWN*FOV/(BLR4*180*lO -3 Ir))fFOVD/32

All unknowns are IP input variables.

ISHFT = 15

IRSLT = ACSF D094
D095

ILEFT = SRAC - 7

CNTX = 8448*2 7-SRAC D098
D099

CNTY = 8192*2 7-SRAC D09A
D09B

XC = (ACSF*AZIM)/2 15+ CNTX D059

155
YC = (ACSF*ELEV)/2 15+ CNTY D05B

D05C

AZIM and ELEV are direct cell interface variables.

AIA



CAV

XK = 0 For a point target PT 0 D055
D056

YK = 0 D057

D058

The values for XK are calculated by ASPGEN and stored in a table

location $0200 + IASPC I /4
PPM - 63/TSZX Points/meter for simple target.

PPM- 63/ (T Y/2 2 + TSZX2 Pointsneter for a complex target.

TSZX and TSZY are IP input variables.

XK - PPM*RKXM*16*SIN(ACOS(( IASPC I/4 - 1)/16))

YK - KEYY - KYP = PPM*RKYM*16

RKXM and RKYM are initialization input variables via ETARG.

ASPC is a direct cell interface variable.

AI.5



CSS

To compute COS(ORNT);

1. Convert ORNT to decimal

2. ORNTI0 * 1.41

3. COS (I.41*ORNT1 0 )

SS = FOVS*RANG*2SR
Fv

SS = RANG*2 5*64/NPWN/(TSZX/BLRM*1000)

ORNT and RANG are direct cell interface variables. All other unknowns are

IP input variables.

XM = SS*COS(ORNT)*2 -15  DO5D
DO5E

YM = -SS*SIN(ORNT)*2 -15  D061
D062

XN = SS*SIN(ORNT)*2 15  D05F
D060

YN.= SS*COS(ORNT)*2 -15  D063
D064

Al. 6



SILA-15 
czc

XO= -((C*XM + YC*N)*2SCl- XK) D051
D052

YO = -(CC*YM + YC*YN)*2SCl- YIC) D053
D054

A1.7



Appendix II

Initialization Interface Variables

A1.



Initialization Interface Variables

DBUG Debug target flag (1,FFfDEBUG) D080

VALD Valid target flag (1 = Valid) D081

FLAR Target flare flag (U = Flare) D082

PLUM Complex target flag (1 = Complex) D083

CYCL Cycle count D09E

ERRF Error flag D09P

RRAN Resolution Range D084
D085

RCO = TSZX/BLRM*1O00

RRAN - RCO*NPWN/(NPWN + 1)

LRAN Linear Resolution Range 0086
D087

(not used)

KEYY Y Key Point D088

D089

IMAX - 64

Simple target Complex target

Tl = TSZX Tl - TSZY*TSZY/4 + TSZX*TSZX

PPM = (IMAX-1)/Tl PPM = (IHAX - l)/SQRT(Tl)

KEYY - PPM*RKYM*16

ISFR Intensity Scale Factor Pias for D08A
Resolved Target D08B

CO = 64

CM2PM2 - L.OE - 4

SMSY - RNEFD*SNRT

AII. 2



RCO - TSZX/BLRM*1000

REAVG =PAVG/PMN(4)*9

RJJP -IPOLTY* CRJT-BK.RD*100000*EXP (ATTN/ 1000))

C5 =CO*CM2PM2 /SI4NSY/NPWN/NPWN

ISFR =IR2ND((C(ALOGCC5*RJJP/RCO/RCO/RFAVG) IALOG/2) )*2**8

ISP Intensity Scale D08C
Factor Bias for a Point Target D08D

CST -9.0

CO - 64

CM2PM2 - 1.0 E-4

SMNSY =RNEFD*SNRT

C5 - CO*CM2PM2/SNNSY/NPWN/NPWN

RuJP - CUJT - BKRD*l0000*EXPCATTN/l000)*IpOLTy

1SFP IRNDC CALOG(C5*RJJP/CST)/ALOG(2))*2**8

AL2E ALPHA*LOG2 CE) D08E

D08F

l/ln(2) lo102 (e) - 1.442695041

2 22 _ 4194304

A2L2E - l.442695041*ATTN/l000*4194304

FOVS Field of View Scaling Factor D090
D091

SRFV 20 Shift Applied to FOVS D092
D09 3

RCO - TSZX/BLRM*1000

F1M - 64.0/NPWNIRCO

LSHL/FTMP,20)

FTMP - FOVS*2 SRV
2 0

A1I.3



ACSF Angle to Coordinate Scale Factor D094

D095

DPM - 0.0572957795

BLRD = BLRM*DPM

NFOV - IRND(NPN*FOVD/BLRD)

FPPD - NFOV/FOVD

TCDPC = 4/128

TCPPC - FPPD*TCDPC

LSHL(TCPPC,15)

TCPPC - ACSF*2
2 0-JTrP

SRAC 22 Shift Applied to ACSF D096

SRAC = JTMP + 7 D097

CNTX Shifted X Center Coordinate D098

D099

CNTX 528*16/2**JTMP

CNTY Shifted Y Center Coordinate D09A

D09B

PTSS Point Target Step Size D09C

DO9D

PTSS = 64/NPWN*2**4

AII.4



Appendix III

System Flags

AIII.1



SYSTEM FLAGS

ITSW = tFLGS(!) TARGET TYPE
ISVSw = iFLGS(2) TARGET GEOMETRY FOR COMPLEX TARGET SIDE VIEW.
ISC iFLGS('3) TARGET TYPE 1= LONG WAYE.-CHL 2= SHORT IIAYEJ-ChL
IPOLTY = [FLGS(4) POLARITY
IFJ = TFLGSk5) PLUSE JAMMER FLAG
IFL = EFLGS(6) FLARE FLAG
IPRI = JFLGS(7) PRIORITY
IPLH1 = iFLGS.8. PLUIME FLAG
ITN = IFLGS(9) VIEW NUMBER FOR COiPLEX TARGET
ITCLR = IFLGS( O) TARGET COLOR
ISRUT = IFLGS(11) TRUE TARGET FLAG
IGLISW(.:, = IFLGS(12)
IGLI"'.i = IFLGS''13) TARGET INTENSITY GRADIENT FLAG
1CL.IS.(3) = IFLGS(14)
ISKF.V = IFLGS(15) SEEKER CHECK VPLUE FROM STTP
I RCS = FLGS(16) 1=ROSETTE 2=CON,:CAN
NF'4N = !FLGS 17) NUMBEER OF POIHI S IN ONE DEi'EN.SION OF BLUR DI AETE
M .SCiR = !FLGS(18' MAXI MUM SCAN RATE FOR CONSCAN
NF C4 1) = IFLGS(19) SCALE TO NEFD CHANNEL I
tF-: ,2 F LGS(20 SC:ALE TO NEFD CHANNEL "
I S.ROT = I FLGS (21) COH'SC:AN SEEKER F:OTAT I ON
I ":f: . 1 FLGS(22) SEEKER CHECI(SIM 'ALUE

SYSTEM FLAGS

I SYF,( 1;. = SYSTEM ERROR FLAG
ISYF( 2) = iANIUAL 'SELECT FLAG
I SYF 3) = AUTO 'EQLIEtNCE NUMBER
I f' 4' = STROBE El'. I STS

I S",F' 5 = FLARES EXIST
I F 61:, = NUIME:ER OF FLARES
I F:-Y'F 7) = TARGET I I q FLARE
I'-. YF* ;3 ) = TARGET 2 IS A FLARE
I =-F, = TA RGE" .3 IS H FLARE
I ="F, Ii' = TARGET 4 IS A FLAFE
I SYF(11' = TARGET 5 IS A FLAFE
I ,,F 12;, = TARGET 6 IS A FLARE
I'.-%,F I = IR R': GET 7 IS A FL,:;,F-FE
IP: 'F:: 14 =- TAR11ET 8 IS A FLAF..E
I'.-;YF,'11 = TARGET 9 IS A FLARE
I ,F',i:, TARGET 10 IS - FLARE
I:- F, I TARGET 11 IS A FLAR E
I A. RAGET 12 IS A FLiRE

1, THF.GET 13 IS A FLrFIE
T- . T . T 14 1 i FLiF:E
IF,,F(21) = TARGET 15 IS H FLARE
1 S''- ' *- = T P,-,ET I16 I -*-- FbikfE
I 3'F' ,".) = T FI*GFT FT IS A FLA5.:E
IS'F,:-4', = TF:PGET 1,3 IS A FLARE

F '25., - TFiRGLf 19 IS H FLiFE
I;:, .. ), .. TP;'-:iI 20 I- A FLAF'E

0 1-'1 A S .. lP

AIII. 2



Appendix IV

Target Parameters

AIV.1



TARGET PARAMETERS

TSZX, = TkG(1) TARGET SIZE X (METERS)
TSZY = T F.G('2 TARGET :3IZE Y? 'METERS)
TAR = T G3' TARGET A " PECT F:AiTI12'
RJT =T RG -'4' TARGIET PADIANCE i'WfTTS/STERADIAt4S:
RKXM = T FG,'5 ' X KEY POINT (METERS:
RKYM = TVG'.) -Y KEY POINT (METERS)
RMAX = TRG (s7) MA I MUM RANGE fMETERS)
PM IN = TR 8:: MiI NI MUM RANGE f'.METERS)
PPM = T R G (':' POINTS PER METER IN T.L.R.
RC~I = TRUI O)' RESOLUTION RANCE (METERS)
P1IN = TPGt. 11') H:INGE OF 1: 1 RESOLLIT ICON :( METEFRS,
P.JTP = TH1)CONTRAST RADIANCE W,.ATTS.,*STERADIfirlS)

AIV * 2



Appendix V

Intensity Data

AV. 1



INTENSITY DATA

**I =IPLIITtI

CN'Il* = PEAK- (ALL) -

CN(K2! I) = EDGE C E:(T)4 E'.R.E'
CtNl( :3 I ) = EDGE C Y(T ONLY)3
CN(4, 1 : = E:FEAK~ FT (XEB T ' )EEFKE* 'YB(R>
CN 5:: I ::. = E.-K VALUE C E , T' *1 E (R E.- I

5i 1'*- = EB::E AK PT C YB(T CitILY) I.
.. 1 8 : ' ~K V.ALLE C EY(~T ONLY) 3

AC:CUIMULATEDl iNTENSITY VALUES

ZsUm' = ZS( 1 I) I I=49 TOTAL FOR ALL VIEWS 3
ZCNT = ZSQ 1) 1=4p TGTRL F'JF'P RLL VIEWI~i
Pm":: = ~ ?:.1: C I =4, MA:-, FOR FILL ',I EWS* I
PFM ( S4~ 1: 1 I=49 rMIit-i F1OR tLL V IEWS I

Av.* 2



Appendix VI

Seeker Parameters



SEEKER PARAMETER S

RHEFD(D~ RESPI I 1) NOISE EQ~UIVALENT FLUXo DENSI$TY (WATTS/C ti-t2*,
ARESml) PEP(Iq, S ESTEN~ RESPOiN-3 VITYi ('VOLT S.W AT TS/ Ctt2.-

RTTHtl) I.'=ESF'KI94 *y ATMOSPHER:IC ATTENUATION COEFFICIENT : Ki
StIFT(I = ESP(195) SIGNAL TO NOISE RATIO TO TRACK
ANO IZ:1 = RESP( 1P e) SYSTEM NOISE LEVEL
S IGMt*4 I. = FESP( I ?) MINIMUM ':IGHAL AT APERTURE

C5 =RESP(I)S> SEEK~ER IRRADIENCE TO FHS SCALE FACTOR

AVI * 2



Appendix VII

Field of View Data

AVII.l



FIELD OF VI'EW DATA

F'V( 1) =FOVD [R F: )I ['PO~'(C3
FOV(2) E(RRt- C3 S LUR DIRlETEF M ILLIF:ADIHtV)
F 0V (: 2.' TBPC: C Ri C TARGET I[EGF.EES PER COUNT

FOV'(5) -- , EFOVD C C]
FOV(6) TCFPC [R CJ TARGET COORDINATE POINTMS PER COUh-T

FOVS)

AVI1. 2



Appendix VIII

Initialization Processor Subroutines

Compiled by Donn Hall

AVIII.1



Initialization Processor Subroutines

ACOS - Arccosine Function

Input (x)

ADFLT - Real Array Default Function

Input (A, I, J, M)

ALP - Argument List Processor - ALP is an assembly routine which is designed

to process the argument list of an abortran subroutine.

Input - (A) = Number of Arguments.

ANMD - Set Alpha-Numeric Mode

APKT - Intensity Target Display

Input - (IA, IR, MX, NLVLS)

Call - (INIT, PAGE, GREY)

ASIN - Arcsine Function

Input (x)

ASPGEN - Plume Aspect Generator

Inputs - (AR, KEYX) Input files - (IFLGS, SA:B, TRG.SA:O)

Call - (LDASP, LDTCPO)

AXES - Flare History Display

Inputs (X, Y, N)

Call - (INIT, PAGE, PLOT, CRSR)

BELL - Sound 150 MS BELL

BLNK - Set/Clear Blink Mode

Input (OP) OP = 1, Bunk mode on : OP - 0 Clear Blink Mode

CKINIT - Check initialization - CKINIT is a FORTRAN callable assembly routine

which is designed to check if a total system initialization is in

order. A system initialization may be necessary for any of the

following reasons:

1. A power up restart has been done on the ETSG

2. A power failure which cause reset of the PIAS

3. A hardware abort (restart)

If any of these three reasons are present, CKINIT will initialize

all PIAS and return a initialize required FLAS.

Input - (IVAL) - 0, if initialization was necessary

1, if initialization was not necessary

Call - (ALP, TPIAS)

CLRTMP - Clear Target Map - CLRTMP is a FORTRAN callable assembly routine

designed to reset the target maps to a clear state. It will write

zeros to both halfs of both channels of the target map.

AVIII.2



CNVERT - Convert ETSG Floating Point to MOTORODA Floating Point

Input - (INUMB)

COLR - Set Background/Foreground Color

Input - (BACK, FORE)

CPS - Check Plot Status - This subroutine checks to see if the terminal is

currently in plot mode or in a plot submode, but leaves "PLTF" set CPS

always leaves the interface plot mode set (PLTP)

CRSR - Set Cursur Position

Input (COLM, LINE)

DIR - Directory of SEEKERS and TARGETS - DIR produces a listing of all

TARGETS and SEEKERS previously recorded in memory.

DLY - Delay For Specified Time. - DLY will wait for a specified time. This

delay is in increments of 10 incroseconds with a minimum of 40 microseconds

delay.

Input - (B) B = Number of 10 microsecond delays

DPLX - Set Half/Full Duplex

Input - (MODE) MODE - 0, Half Duplex: MODE = 1, Full Duplex

DRC - Draw Boresight Circles - DRC Draws two circles on the monitor/display.

The routine is entirely table driven. All values for the X/Y coordinate

values for the circle points have been precalculated

Call - (TCRD/OUT)

DRX - Draw Boresight Crosshairs - DRX places A "+" in the center of the

monitor display.

ETARG - ETSG Target Generator Program - ETARG, in cooperation with the

user, sets all the static parameters for a given target.

Input Files - (IFLGS. SA:O, CN.SA:O, TRG.SA:O, FOV,SA:0, RESP.SA:O,

ZS.SA:O, ETSG.CM:O, ESYS.SA:O, DSKR.SA:O SCROIJ7Z.QR:O)

Call - (FILTST, MLOAD, STTP, BELL, INVERT, LDPTIG, PAGE, GENTRG, DELF,

ASPGEN, STTGCH, STTSGN, STSTBB, LDTCPV, LSHL, LDDSPC)

ETSG - Driver For ETSG Initialization - ETSG initializ.j, in cooperation

with the operator (user), all seeker and target static parameters by

call ins other subroutines.

Input Files - (ESYS:SA:0, DSKR.SA:O, Various user defined variables,

Seek.CM:O, ETARG.CM:0, PULSE.CM:0, FLARE.CM:O, RUNETSG.

CM:O)

Call - (INIT, PAGE, BELL, CKINCT, FILTST, INITCP, MLOAD, DELF, SEEK,

ETARG, PULSE, FLARE, RUNETSG.

AVIII.3



ETSGGO - Set Ready/Run Modes

Call - (READY, RUN)

FLAG - Set/Clear Flag (Enable/Disable Erase)

Input - (IFLAG) IFLAG = 0 Clear; IFLAG = 1 Set

FLARE - FLARE Generation Program - FLARE sets all parameters for flare type

targets.

Input Files - (ESYS.SA:O, ETSG.CM:O)

Call - (KEYIN, INIT, PAGE, BELL, FILTST, MLOAD, AXES, LDTCPU)

GENTRG - General Target Generator - GENTRG is called by "ETARG" to produce

the targe- image based upon the parameters set in "ETARG".

Input Files (IFLGS.SA:O, CN.SA:O, TRG.SA:O, ZS.SA:O

Input - (ITYPE, SIZEX, SIZEY, IFLZ)

Call - (MX, IRND, INVERT, OUTFLT, SAVTRG)

GRAPH -

Input - (JSIG,N)

Call - (PAGE, PLOT, CRSR)

GREY - Provide GREY Scale Character.

Input (IX, IY, IV)

IX = Character Column (See CRSR)

IY = Character Line (See CRSR)

IV = GREY Scale Valve (1 to 55)

GRSC - GREY Scale Value (Table)

IADET - Integer Array Default Function

Input - (I,A,I,J,M)

INIT - Initialize Plotting Package

INITCP - Initialize CPU

Call - (LDDSPC, LDTCPU)

INVERT - Convert Motorola Floating Point Numbers to ETSG Floating Point

Numbers and return the result as an Integer.

Input - (RNUMB)

Call- (SAA)

IRND - Real to Integer Rounding Function

Input - (X)

LDASP - Load Target Aspect Ram - LDASP is a FORTRAN callable routine designed

to transfer data from the initialization processor to a select targeL CPU

aspect Ram

Input - (ITRGT, IVIEW, lARRY)

Call - (ALP, SEA, MDV, CEA)

AVIII.4



LDDSPC - Load Display Processor - LDDSPC is a FORTRAN callable routine

designed to transfer data from the initialization processor to the display

processor of the ETSG system. It also presets other values for the

display CPU.

Input - (ITARG, ICOLR, MINAR, MAXAR)

Input - (0, ISCLF, 0, 0)

Call - (ALP, SEA, MDV, CEA)

LDNTRR Load Null Track Radios Ram - LDNTRR is a FORTRAN callable routine

designed to transfer data from the initialization processor to the null

track (reticle rotation) rams of the ETSG system.

Input - (ICHNL, ICONT, IDATA)

Call - (ALP, SEA, MDV, CEA)
LDPLSJ - Load Pulse Jammer - LDPLSJ is a FORTRAN vallable routine designed

to enable the initialization processor to load the bit pattern used to

describe the pulse jammer for the ETSG system.

Input - (IARRAY, NWORDS)

Call - (ALP, SEA, CEA)

LDPTTG - Load Target Lookup Ram with a Point Target - LDPTTG is a FORTRAN

callable routine designed for transfer data from the initialization processor

to a selected target CPUs lookup ram point target

Input - (ITARG, IDATA)

Call - (ALP, SEA, MDV, CEA)

LDRET - Load Reticle Maps - LDRET is a FORTRAN callable routine designed

to transfer data from the initialization processor to the reticle maps of

the ETSG system.

Input - (ICHNL, IDATA)

Call - (ALP, SEA, MDV, CEA)

LSHL - Left Shift with Limit - LSHL will shift a given floating point number

left up to a supplied number of bits while retaining integer value limits

on the result.

Input - (FNUM, ISHFT) - Output - (IRSLT, ILEFT)

Call- (ALP)

LDTCPU - Load Target CPU - LDTCPU is a FORTRAN callable routine designed

to transfer data from the initialization processor to a selected target

processor of the ETSG system.

Input - (ITARG, IARRY, NWORD, IOFFS, ISIZE)

Call - (ALP, SEA, MDV, CEA)

AVIj.I.5



LDTLR - (Load Target Lookup Ram) - LDTLR is a FORTRAN callable routine

designed to transfer data from the initialization processor to a selected

target CPUS lookup ram

Input - (ITRGT, lARRY, IVIEW, IROWN)

Call - (ALP, SEA, MDV, CEA)

NRT - Null Track Radius - Generates coordinates for null track radius hard-

ware

Input - (NFOVR, ENTR, ISROT)

Call - (LDNTRR)

OUT - Output Character to Monitor - Out ships one character to the monitor

with a delay of 53 MS. If this is insufficient time for the control character

in question, a further delay must be implemented.

Input - (A) A = Character to send

Calls - (DLY)

OUTC - Ship Character to Intecolor (Terminal)

Input - (A) A = Character to ship)

OUTP - Output Character with Programmable Delay

OUTPLT - Output Subroutine for Display

Input - (IPTG, JJ, IPKP, NLVLS)

Call - (LDTLR, APKT, PKT)

OUTS - Output Character with Standard Delay

Input (A)

PAGE - Clear Screen

PCT - Reticle Point Counter - Counts the number of points in the reticle

to insure that it does not exceed the field of view

Input - (IA,IR) IA = Total field of view

IR = Radius of reticle (if the scan is a square scan

IR - Half the width of scan)

TART,ETARG sub module)

PICT - Target Display

Input - (IA, IR, MX, NLVLS)

Call - (INIT, PAGE, COLR, PLOT, DRSR, TEXT, GREY, ANMD)

PLOT - ETSG Plotting Package (Driver Routine)

Input - (ARGI, ARG2, ARG3)

Call - (ANMD, BELL, BLNK, COLR, CRSR, DPLX, FLAG, GREY, INIT, PAGE, PLOT,

ROLL, TEXT, ALP, BSCT)

PLOT - Move * Pen * To (X, Y) coordinates

AVIII.6



Input - (X,Y,P)

X = X coordinate value (0 to 159)

Y = Y coordinate value (0 to 191)

P = Z Move * Pen * Down P - 3 Move * Pen * Up.

PMD - Parameter Mapping and Overflow check - PMD initializes CRT, loads post

processing data, prints headings, displays data, checks rosette limits,

checks intensity overflow flags

Input - )

Call - (INIT, PAGE, RDDSPC, RDTCPU, LDTCPU, BI)

PMS - Plot Mode Start - PHS is called to initiate interface plot mode

Call - (OUTC)

PMT - Plot Mode Terminate - PMT is called to terminate the interface plot

mode

Call - (OUTC)

PRS - Process Preset - PRS initializes the ACIA for terminal I/0 and programs

the PIA

Call - (OUT)

PULSEJ - Pulse Jammer (Strobe) History Generator - PULSEJ generates all

necessary parameters for pulse Jammer (Strobe) targets

Input Files - (ESYS.SA:O, ETSG.CN:O)

Call - (KEYIN, INIT, BELL, PAGE, FILTST, MLOAD, GRAPH, LDPLSJ, CRSR)

RDDSPC - Read Display CPU - RDDSPC is a FORTRAN callable routine designed

to transfer data from the display processor to the initialization processor

after an ETSG run

Input - (IFLAG, IMNAR, IMINR, IMAXR, IMXAR)

Call - (ALP, SEA, MDV, CEA)

RDTCPU - Read Target CPU - RDTCPU is a FORTRAN callable routine designed

to transfer data from a selected target CPU to the initialization processor

after an ETSG run.

Input - (ITRGT, ARRY, NWORD, IDFFS, ISIZE)

Call - (ALP, SEA, MDV, CEA)

RDTMP - Read Target Map - RDTMP is a FORTRAN callable routine designed to

read the target maps one line at a time.

Input - (ZCNNL, ITHAP, ILINE, IARRY)

Call - (ALP)

AVIII.7



ELECTRONIC TARGET SIGNAL GENERATOR (ETSGI SOFTWARE DEVELOPMENT.(U)

" 4 OCT Al P F PRITCHETT. N A (HEIR DAAMOI-Al D 8006
UN7CLASSIFIED UAH-296 DRSMI RD-CR-82-4 49.

2A -12 f LBMflf NHVTVlf lf CLlflflCEAD MS-CF/flflfl



1.0 ~

____ 2.0

H '*'1I8



READY - Enable ETSG to Run - READY is a routine which will set the ETSG

in run mode and set the READY line (To the CDC 6600) high.

RETGEN - Multi-Size Reticle Generator - RETGEN creates a reticle of the

size asked for by the user.

Input - (NPTS) NPTS = Number of points for width

Call - (PCT, CRSR, PAGE, FILTST)

ROLL - Set Terminal in Roll Mode

RPS - Restore Plot Status - RPS sets the terminal in the plot submode

specified by "PLTF.' Used in conjunction with "CPS" it allows a non-plot

function to be issued from within a plot mode. If plot sub-mode is

specified, the interface plot is left set.

Input - (PLTF) PLTF = Plot submode desired

RUN - Final terminal preparation - RUN is the last routine called by the

ETSG initialization software. It prepares the terminal for the run and

turns control over to the display processor. Control is returned to the

calling routine when the terminal is once again handed over to the

initialization software. Final terminal preparation consist of the

following:

1. Clear the screen

2. Draw two concentric circles (FOV Representations)

3. Draw crosshairs between the circle

Call - (DRC, DRX)

RUNETSG - Initialize system to run - After completion of target and seeker

loading "RUNETSG" initializes the system to run. When initialization is

complete a command is sent to the monitor allowing the user to start the

run

Input Files - (ESYS.SA:O, ETSG.CM:0)

Call - (KEYIN, INIT, PAGE, BELL, FILTST, BOOT, OPENF, DELF, LDTCPU,

CLRTMP, STSEEK, READY, READA, RUN, CRSR, PMD, CLOSEF)

SAA - Set Argument Addresses - SAA is a routine that sets aside an address

for the result of an arithmetic process and enables that result to be read

back into the calling routine

Input - (RSLT)

AVIII.8



SEEK - Set Seeker Parameters - SEEK, in cooperation with the user, sets all

static parameters for the seeker

Input File - (IFLGS.SA:O, RESP.SA:O, FOV.SA:O, DSKR.SA:O, DROS.SA:O,

ICON.SA:O, ESYS.SA:O, ETSG.CM:O)

Call - (KEYIN, INIT, PAGE, BELL, FILTST, DIR.LDDSPC, STAROS, NTR, RETGEN,

STOAC, MLOAD)

SAVTRG - Save Target Parameters and/or Image

SRM - Set Run Mode - SRM is called to terminate the initialization process.

It turns the display over to the display processor, and starts the run.

Call - (OUT, DLY, INIT)

STAROS - Set Rosette Scan X/Y Amplitudes - STAROS is a FORTRAN callable

routine which will allow the initialization processor to set the amplitude

(MIN/MAX, X and Y values) for the rosette scan

Input - (IXMIN, IXMAX, IYMIN, IYMAX)

Call - (ALP)

STOAC - Set Analog Output Controls - STOAC programs the PIAs, DACs etc.,

which controls the analog output of the ETSG. The values set by STOAC

include:

1. The background level

2. The noise source level

3. The analog scale factor adjust

Input - (ICHNL, IPBGL, IPNSL, IASFA, T-SFA, IESFC)

Call - (ALP)

STSEEK - Set Seeker Type - STSEEK is the ETSG interface with the PIA that

controls the simulated seeker type the ETSG is currently rising

Input - (ITYPE)

Call - (ALP)

STSTRB - Set Strobe Flag for Target

Input - (ITRGT, ISTRB)

STTGCH - Set Target Channel

Input - (ITRGT, ICHNL)

STTGPM - Set Strobe Flag, Target Channel and TARG Polarity, (DRIVER, ROUTINE)

Call - (STTGCH, STTSGN, STSTRB)

STTP - Set Target Type and Priority - STTP sets the target type, priority,

and generation flags.

Input Files - (IFLGS.SA:O, DTRI.SA:O, DELL.SA:O, DRECT.SA:O, DPLUM.SA:O)

Call - (FILTST, DIR)

AVIII.9



STTSGN - Set Target Sign

Input - (ITRGT, ISIGN)

TEXT,- Send Text to Terminal - This subroutine ships characters to the

terminal bypassing the FORTRAN1~ /0 package--This allows cursur addressing

of text on the screen (Via CRSR)

Input - (INFO, NUMB)

TPIAS -Table of PIAS to Initialize

TRCD -Table of Coordinates for Boresight Circles

AVIII.1O



Appendix IX

ETSG.BAS

A Basic Program Which Emulates Some Internal ETSG Functions

Developed by

Paul F. Pritchett

and

Donn Hall

AIX.1



20 01IM $4.t)S()j()
3 0 PK It N' I T k: WP I .: 1. 1 -, i iqG 6 1 . 1 'T F)F SV, 14 f t I T Ws F4 1) LA f1 I F
4O'PKEN'T",st; SLt? CAN. TYtPe. It# T.eIV hil'E THK Ii~~Iut)~Gr i.*

70t~1 2. 4FAAL-LICI -LL, 10 L)ECIMrAI, I~~Hi:

90,Nir f"4 . 'ii -J14 k i I.'ll .0K I A C0u'. -OE .

1O't'H 'i"5, il C I l 1, To) t'l IMN CW,!V*.Alfff."

" ~. .4S i'WCi"'L C%,f.VP.td4Tr.$E."

I bi)i J1 H f. ~JIf I ~. CS.S.u
1 7 U j( j T: "I o k* f I I% IN. c: 'y

19' ii 3'

13 1 ', -4 A' . ) -)IA I ,)I , ! .r T 41i THt

29, Z., , ,:

3 f) i

34.

47,

42 I

4 3 -'*

4a >

4?1Al. 2i



* 40J1,r i$J, r9 ) 3" '1 t rUJ )4 -

"10 1I. rt J 0J )=O ."j ' r p I i  'j I= 114

2J I - ( j )" : " 'i)f l 2

/ h ij ., ri( i A*

7 7 k) I If

-F14 I Al'JI CL f

ti r . ..t',.' ~

90- 1' r-

S t1.=o

r 4 ., " I i ., I: ; ' 
P

47 . -'

133 .. I.-iS.
-

AIX 3

n4 i;- -'- ,*( 
" 1

ltk l I I " ; fl'., ",.- ,

B 7 .. .. ,

11;|EJ " *. It
l  I *

-
! | - * '

III I-i

1). I ., ) t , '

u , I " d .l .. . ( • .. -. 9 
'

. , . -
°

1i l II '1 i ~ i/ i'1 * -.. t '.9.9 ! . ...

II . - S



13 2h b=, 1 k o
13 t'11. CI'A, TO Ww S CiNVER .

13 0

1 -- 1 t4 14 r k
l 1 f '. ,..' i :

1 4 -' i ,t e |' i " ; "< ';

141 I.L 4 1 3 LI ,0'

1 4, . ,c

1 4A14.' t i ll t/4M a! l}

1 . .S4

15 1 ' r. ,e

454 -,15/., =f ! '
1~ ~ ~ '. z I.

15 ,. .

1 + $ . I / J I I' * , ; lt ,t

le , .' , '

1 ' ,"'I'mS, I, :'Pt l" ,, CmJ ;'."i I'm !l

3f '' ,, ' ',m ',m.m ,L. K,

1I ',-.... .., . ~
ll,, -

17 ,

17, --

i ,.,. , + . I *.t l

1) =",

i , "m , ~ " : ;, , , , f
If1 1''4' I tt mI I~I , m

los i ,,- i .m ,' i 'm

ida .m ,.,.. ' i

AIX. 4



19()U1k NC" L-kFtxu~ *A

191 ok rj N4h~3~~JJ~IRI

19'e. IRNO

I19,t il tI"iI 1 1 4 kI I 'c" liU it. t< 0U '.O li tc. )"

21 (0-. 1'W

2( 0 '(~ Mk .A I INI o

23 0 '), i, ')'

2.1 ~ ~ ~ e I i ~ ~ ~ S'? '.']*

2 

21. 1- '-)

2 1
21,

2I1

2i ' I=

24.

2'

2,4'

9'', ''AIX. 5



pwi , ur 'I AN ?:I,,I' f

2 te',, IF R. tj. s Pi ,s - ,' I ,'fr a S

l 1,j ). ' I 'A NS. ii., 'I AR (.A ftN6aT Li- UTO is. Et E 0AI, ji, 2'I.iUR U

26 u ''I tII (3 -f.1 1 f, S

2624 ,d 1, V I" VA,! k2.R U1 IAt"f I II
eih p3 f'. 1L : 1Ck T.1 IU , ' I |:;'I(

2 6,1u - -1'i I j *(tie
.  L7

2hb ' .- 41. rwT " 1 ;it" I.,. kCi. ) , 0o U.4'",9" I I I'"

26 , i ' . T (, )
26 7 k. ) I m.".' , ,A.

2"/Y ,

koa,

2?'
a, .. . . I ., .

2 t , . i ,,+ .. : ; ' i ,

2 i '*.,-I -'. *, .t z.

. ' ;.* .,.2b t..

2a:,' .. ' . '., .

,. 4., / .' l9 I ' * & a " t4+ I ,a -
"  }  I

4.c! , . -- , *,

a4 j 14/i.J - . ,. ++ < , -

'.J* ( , ' "" ' a • .

2 t .i a ,, . .

I. .j • .. 1
o, a ,. - ... . , * ;.. . '

3(1, . . ,.

J la / .. " ,. ., . - .a. :. -.. '

3',. . , a, -. ,, , • , *,,

3 Ci , . * " , - "

4CD II/ aa ** : ' 
+ 

I"t
4 i.

- AIX. 6



4001 ',ll

i 5~01, ,=l,, I (0/0.C /

5U,4, /F 'i<A ,r.L) ..50 ,' LL.| {.

50',.,, ,.Ji,..) J Jul
!) /= 1I .,,1( "I . ,

50"/' 7 . *'*,!' : ,/

99 t :4

AIX. 7



Appendix X

ETSG Operating Instructions

AX.l



Operating Instructions

1. Turn display console "ON."

2. Open doors to disk drive and remove any diskettes therein.

3. Turn disk drive "ON."

4. Insert diskette DPO in drive 0.

5. Insert diskette with appropriate seeker and target files in drive 1.

6. Close disk drive doors.

7. Depress EXORciser RESET button.

8. Type E800;G

9. Type ETSG at the console after the 1DOS prompt = appears.

10. The ETSG initialization software is interactive and will now prompt

the operator.

This instruction set assumes that the EXORciser is "on." If this

is not true refer to the "power up" instructions in Appendix XI. For more

explicit instructions refer to the "ETSG Operator Manual" which is generally

kept near the ETSG.

AX.2



Appendix XI

Frequently Used 14OS Commands

Compiled by

D. E. Bockstahler

and

G. R. Loefer

AXI.l



POWER UP:

I. Turn on CRT (switch on back, right rar)

If. Turn on EXORCISOR (key switch)

Ill. Turn on Disk Unit (red button on fbnt)

BRINGING UP MOOS:

I. Slide System Disk into Drive 0 (left side)*
II. Slide User Disk into Drive 1 (right ;Ide)*

III. Close both doors on Disk Unit

IV. Type: 'MAI ** (no carriage return)

V. Type: 'E800;G'** (no carriage return)

'' Equals Sign should come up when the system is ready.

If not, start over at Step IV.

*To load a disk: Hold disk carefully, (do not bend) with the label side

up and the opening on one edge toward the disk drive. Slide the disk

slowly and smoothly into the unit until it stops just past the door.

**NOTE: Command strings are enclosed in single ' ' quotes.

Lower case letters inside quotes are user selectable names.

Upper case letters inside quotes MUST be entered as shown.

POWER DOWN:

I. OPEN BOTH DISK DRIVE DOORS FIRST

II. Remove User Disk and return to box

III. Remove System Disk and return to box

IV. Turn OFF Disk Unit

V. Turn OFF EXORCISOR

VI. Turn OFF CRT

AXI.2

.. ... l ( ........,,, 1 1 , .. ... .....



BAUD RATE:

1. Set desired BAUD Rate Switch on CRT And turn OFF the

previously set rate.

11. Set matching BAUD Rate on the EXORCISOR. (switch is

on the right rear)

AXI .3



FORTRAN QUICKIE:

I. Turn on CRT

II. Turn on EXORCISOR

Ill. Turn on Disk Unit

IV. Type: 'MAID'

V. Type: 'EBOO;G'

VI. Create Program File with Editor (store on Disk Unit 1)

VII. Type: 'CHAIN4-*F4;FNfilename%'

VIII. To Execute Type: 'filename:1'

FREQUENTLY USED MOS COMMANDS:

Note: +-* means a space must be put here.

FORMAT:

PURPOSE: To prepare a new disk or wipe out an old one

I. Load Disk into Drive 1
II. Type: 'FORMAT'. RESPONSEz 'FORMAT DRIVE 1'

Ill. Type: 'Y' for YES. RESPONSE: 'LOCK OUT ADDITIONAL SECTORS

IV. Type: 'N'

DOSGEN:

PURPOSE: To initialize a new disk

I. Load formatted disk into Drive I (if not already there)

II. Type: 'DOSGEN4-,TU' for a user disk or

Type: 'DOSGEN -,T' for a system disk

AxI.4



DIR:

PURPOSE: List directory of files on a disk

I. Type: 'DIR' for directory of Driye 0 or

Type: 'DIR .-+:I' for directory of Drive 1

LIST:

PURPOSE: To list any ASCII file stored on a disk

I. Type: 'LIST+-+filename' for a file on Drive 0 or

Type: 'LIST.-*filename:l' for a file an Drive I

filename: Name of file, including the suffix if not '.SA'

DEL:

PURPOSE: To delete a file from a disk

I. Type: 'DEL+-filename' for a file on Drive 0 or

Type: 'DEL filename:1' for a file on Drive 1

filename: Name of file, including suffix

COPY:

PURPOSE: To copy files (same disk or between disks)

I. Type: 'COPYA-'filenamel, filename2'

filenamel: Name of source file, including suffix and

drive number

AX1.5



filename2: Name of new file, including sLffix and

drive number

NAME:

PURPOSE: To change a disk file name

1. Type: 'NAME.-+filenamel, filename2'

filenamel: Rame of old ,.le, Including suffix and drive number

fllename2: Name of new file, including siffix and drive number

BACKUP:

PURPOSE: To make a complete copy of a disk and

To reorganize files thereon

I. Copy files to system disk in Drive 0

II. Place a formatted blank disk in Drive 1

Ill. Type; 'BACKUP+-*;UR'. RESPONSE: 'BACKUP FROM DRIVE 0 TO 1'

IV. Type: *Y' for Yes

EDIT:

PURPOSE: To edit ASCII files

I. Type: 'EOIT-'filename'

filename: Name of file, including suffit and Drive No.

II. Type: 'AAAAAAAAAAAAAA . . .$$' * (this loads the file)

(use repeat key)

Ill. See section on EDITOR for list of commands and a hints

and kinks list

*Note: $ means ESCape Key

AXI.6



Appendix XII

The 6800 Text Editor

Compiled by

D. E. Bockstahler

and

G. R. Loafer

AXII.l



TEXT EDITOR:

I. Command Summary: Table 2

IT. EDITOR Messages: Table 3

III. Hints and Kinks

I. This is a CHARACTER editor and NOT A LINE editor like TED on the

CYBER.

2. All characters, INCLUDING CARRIAGE RETURN, are legal characters to

be edited.

3. A '$$' (hit ESCape key twice) marks the end of a command line.

4. Commands may be concatenated on one line (if you can keep track of

them) without any extra delimiter characters.

5. MISTYPE? Use SHIFT-RUB (most consistant) or CNTRL-H (only in

EDITOR) for BACKSPACE.

6. Use 'B' to position pointer at head of file.

7. Use 'Z' to position pointer at end of file.

8. Une n'T' to display n lines. Does not move pointer.

9. Use n'.' to skip n lines. 'V' positions the pointer JUST AFTER THE

LAST CARRIAGE RETURN. 'L' counts carriage returns. n may be

negative to backup lines.

10. To input a new program (or a new block of statements), use the 'I'

command. Type one '1, then enter the entire block of code as if

using a typewriter and then type $$(ESC ESC). The entire block

is entered all at once.

11. To input new lines between old ones, use n'L' to position the

pointer AFTER THE LAST LINE TO PRECEED THE NEW LINES. It works

like an 'INSERT BEFORE' comand.

12. Use n'K' to delete n lines. Position pointer just after the last

line to be kept.

13. Use 'C' to change a string within a line. Position pointer just

ahead of line to be edited, (so that a 'T' will display the line).

Use 'Ccurrentstring$newstring$-LLT' to change a string of

characters and display the corrected line.

AXII.2



TABLE 2. EDITOR CO*.MIAND SU1tARY

CO.tAwD DESCRIPTION

A Append. Appends input text from rhe System Reader Device

to tue edit buffer.

B Begixning. Moves the edit buffer pointer to the beginning

of the edit buffer.

* Cstringl$ Change. Replaces the first occurrence of "string I" with

string2 "string 2".

nD Delete. Deletes n characters from the edit buffer.

E (tape) End. Terminates an edit operation by writing the contents
of t'ie edit buffer to the output tape and copying the
remainder of the input tape to the output tape. Returns
control to the editor.

E (disc) End. Terminates an edit operation by writing the contents
of the edit buffer to the output file and copying the
remainder of the input file to the output file. Returns
control to the disc operating system.

F (tape) Tape Leader/Trailer. Writes 50 NULL characters into the
system punch device.

F (disc) The F command is ignored.

Istring Insert. Inserts characters or lines of text into the edit

buffer.

* nK Kill lines. Deletes n lines from the edit buffer.

* nL Line. Moves the edit buffer point n lines.

nM Hove character pointer. Moves the edit buffer pointer a
characters.

Nstring (tape) Search File. Searches file for first occurrence of "string".

Nsrring (disc) Search File. Searches file for first occurrence of "string".
If "string" is not found, returns control to the disc operatinj
systfcm.

aP Punch. Punches n lines from the edit buffer to the System
Punch Device.

String Search. Se.rc!- ,; the edit buffer for the first occurrence
o f " s tr n"*MTO~Lf LCO 0_2_ .

$. ESC Key

AXII. 3



TABLE 2. EDITOR COM11AND SUILHARY
(continued)

COZ01AND DESCRiPTION

nT Type. Types n lines from the edit buffer to the

System Console Device.

X (tape) EXbug. Returns control to EXbu3.

X (disc) The X command is an illegal command in the disc version of
the editor.

Z End of edit buffer. Moves the edit buffer pointer to the
end of the edit buffer.

Control H Backspace. Causes the last character entered in the command
mode to be typed on the System Console Device and deleted
from the command.

Control X Cancel. Causes all commands following the last prompt to be
deleted and another prompt to be typed.

TABLE 3. EDITOR MESSAGES

MESSAGE DESCRIPTION

M6800 RESIDENT EDITOR n.n Printed upon initiation of editor. Revision
is specified by n.n.

@ Prompt. Editor is waiting for a command.

???? Illegal command.

CAN'T FIND "string" Editor cannot find the string specified
by Search or Change command.

BELL The editor rings the bell in the System Con-
sole Device when the user attempts to enter
further commands into a full command buffer.
The user must delete (backspace) two charac-
ters in order to terminate the command with
two ESC characters.

AXII.4



14. Use '$string$' to search for a charactbr string within the file.

It starts searching from the current pointer position to the end of

the file. The pointer will end up at the end of the string it

found, (not at the beginning of the linei). Use '-LL' to position

at beginning of line.

15. Use 'BE' to end the editor program. Do not use just an 'E, you

might lose some of your file.

Note: '$' means ESCape key.

FORTRAN:

NOTE: Be very careful to follow the manual when composinq a FORTRAN

program for the EXORCISOR. It falls short of ANSI Standard

FORTRAN in a number of places (see Table 4).

I. Prepare FORTRAN programs using the EDITOR.

II. Programs must be complete within one file to be compiled and

run. However, subroutines, etc. may be stored seperately and

merged prior to compilation, or just before the Linking Loader

command as shown below.

III. For a one file program in file 'prog.SA:l' DO:

'CHAIN'-*F4;FN~prog%'

DO NOT store programs on Drive 0.

When finished, simply type: 'prog:V to run the program.

IV. For MULTI-FILE programs, progl.SA:1, subl.SA:l, etc.

After making sure all old '.RO' files are deleted, DO:

'FORT'-prog1.SA:1'

'FORT'-'subl.SA:I '

'FORT<-etc.' (as many as there are)

'MERGE-progl.RO:1,subl.RO:1,. ., est.RO:I'

dest: destination file name

'CHAI3-rRL;FI!dest!V

Then Type: 'dest:l' to run the pro'rwa

AxII.5



TABLE 4. CONVERSION OF FORTRAN FROM CDC6600 To EXORcigR

1. No program statement. For READ and WRITE to units other than CRT

use OPENF and 1;LOSEF.

2. No blank lines in source file.

3. must be used for continuation in Column .1 (see special compile

features of FORT 2.2).

4. INT and FLOAT functions do not exist. Simply assign to opposite

type variable to switch types.

5. Variables and arrays are not initialized to zero.

6. Only one dimension statement per program block (use continuation).

7. No variable array dimensioning or accessing outside the dimension

in subprograms.

8. No labeled common.

9. Can't use same variable in both data and common statements.

10. Some forms of data statement illegal.

11. No one line functions.

12. Parameters of functions, subroutines, and array indices must be

constants or simple variables (no expressions).

13. Change Unit 5 (INPUT) to Unit 100 (from CRT keyboard).

14. Change Unit 6 (OUTPUT) to Unit 101 (to CRT screen).

15. tNO FREE FORMAT WRITE.

16. FREE FORMAT INPUT and write a blank line use: 998 FORMAT( ).

17. No 'H' (HOLLERITH) format.

18. Use ' instead of " for format and data statement.

19. No spaces between format and open bracket:

OK: FORMAT( NOT OK: FORMAT (

applies to other statements with brackets also.

20. Keep computations simple, such as:

Don't call a function twice on same line,

Don't use lots of brackets ( ).,

etc.

AXI1.6



21. Keep specia; attention to IF statements'that include computations,

they don't always work.

22. Start all line numbers in columnr 1.

23. Code does not have to start in column 7.

24. 72 columns usable for FORTRAN.

25. Use X and Y in column 1 (special compile feature) to help de-bug

programs with extra write statements.

AXII.7



Appendix XIII

Diskette Files

AXIII.1



DRIVE : 0 DISK I.D. 2 P11OS
8 INEX , C'l
LIST ,CM
MDOSOVO . SY
DIR .CM
M'ERGE .CM
RLOAt' .CM
MIOSOV4
IMIDOS .SY
ABESIC ,Cli
MDOSOVE SY
RASM .CM
FREE ,CII
ROLLOJT CM
EQU ,SA
DurIP .CM
EXBIN .CM
NAME .CM
M]OSOVI .SY
PATCH .Cm
ASM .CM
BLOKED IT. CM
ECHO .CM
EDIT .CM
LOAD ,CM
MDOSO.3 .SY
MDOSER , SY
DEL .CM
CHAIN CI
BACKUP •CM
REPAIR ,CM
MDOSO'5 .SY
DOSGEN .CM
EMCOPY . CM
COPY ,CM
FORMAT . CM
MDOSOV2 . S'
TOTAL DIRECTORY ENTRIES SHOWN : .036$24
"-1

DRIVE 1 DISK I.D, " ETSGDP0
ETARG .CM
ETSG . CI'm
PULSEJ .CM

DCOtI .SA
DELL SF
DRECT .A
DSKR .SA
F .SA
MJSTARG .SA
RUNETSG , CM
DROS .SA
LI SH
DTRI •SA
DPLUM .SR
FLAPE .C.!1
SEEk Ci'
RUNETSG SA
TOTAL DIRECIORY ENTRIES SHOWN : 017/$1I

AXUII, 2



DPIVE I 1 DISK' I.D. IJTRI

RDTCPU .RO
ALP .RO
PICT .RO
LDTLR .RO
GRAPH R~O
STSEEK .RC
PrID POC
LDiDSPC .RO
DIR POC
ETL' .RC
ASPIGEN .RC
IRND .RC
ARCTRIG .RO
DFLT .RC
RLIIETSG .CM

FTNLBX .RO
LDRET .RO
STTGPM .RC
RUNETSG . P
LRUN .CF
LDPTTG .RO
GREY .RO
LDPLSJ .RO
STARDS .RO
LSHL .RO
RDTMP ROP
STAROS .SA
CLRTMP .RO
VERT .RO
ESYS .SA
APICT .RC
ETSGGO .RC
LDTCPU .RO
RDDSPC .RO
AXES .RO
STROC .RC
LDNTRR .RC
LDASP .RO
READWR IT. F:
BOOT .Rr
TOTAL DIRECTORY ENTRIES SHOWN :041,429

:I
DRIVE : 1 DISK I.D. :SEEK
PETCL .SA
LSK .CF

IRETGEN .SA
SEEK .Ro
NTR .SAI
SEEK .SA
PETGEN .RC

TOTAL DIRECTORY ENTRIES SHOWN 0 10/ORA

AXII. .3



DRIVE I DISK 1.D. :JTF:1
CKI.NIT .RD
RD-CPU -RD
ALP .RO
P0? .SA
zs .SA
PIC.T .RO
LD'LR . RO
GRHPH .RO

STSEEK .RO
DIP .RD

ETLB .RO
LDDSPC RDO
TRG .SA
ASPGEN .RO
UIND .RO
ARCTRIG .RD
DFLT .RD
LDRET .RO
STTGPM .RD
RUNETSG .RD
LRUN .CF
Ctl .SA
LDPTTG .RO
GREY .RO
LDPLS-J .RO
STARt'S .RO
LSHL .RD
RDTMP .RD
IFLGS .SA
CLRTMP .RC
VERT .RO
APICT .RO
LDTCPU .RO
RDE'SPC .RO
AXES .RO
ETSGGO .RO
STANC RO
LDNTRR .RO
LDASP .RC'
RESP .sR

TOTAL DIRECTORY ENTRIES SHOWNI 041/$29

DRIk-E 2 1 PIoKh I.D. ISCRATCH

DSB .X
EMT *Ct:
PUJN'- LO)
PLOT .sA
DSD .LO
DSD Sri
PLOT . P
OLD1.$D .LU
INTFiIC .SA
INTFeiCND. SA
TOTAL DIRECTORY ENTRIES SHOWN I011/$98

AIEU. 4 -



*DRIVE :I DISK I.D. :JTR2
CKINIT .PO
RDTCPJ *SA

* VERT *SA
CLRTI1P *SA
AXES c-f
LDTLR .SA
GRAPH S$A
RDDSPC~ *A
STROC . Cm
LDNTRR s*
CKINIT . *--A
PACK , SA
DIR -SA
PMD *SF
LDFSPC .SR
STSEEK *SA
LDPTTG *SR
LDPLSJ .SA
IRND -SA
LDRET .SA
LSHL .SA
RRCTRIG .A
DFLT HS
STAROS SH
STTGPM SA
LDTCPU SA
ETSGGO: SA
LDASP SR-
RUNETSG SA
RDTMP SH
ALP .i

TOTAL FIREC TORY ENTRIES SHOWN 2031-'$1F

:I
DRIVE : 1 DISK I.D. :FSTTST
S Sfi
T .SA
PLUM SA
T02SOI sA
TOIS01 SA
T033SOI SA
TRET S
PT SCA
IELPS S~A
RB .SA
Sol sF
IT RI . SA

TSri:L S~FC CFYENITOR!E$ ~31OWN :O~O

DP.IVE I DISK I.D. IETAIRC

LTG~ ..F
PICT *SA
ASPGEN PFO
ET5 .C
ETARG SRO
ETARG S$A
ASPGEN S~A
APICT ,SA
TOTAL DIPECTORY ENTRIES SHOWN2 G/0

AX11U 5



DRIVE : 1 D'ISK I.B. a SEEK
RETE L .c A
LSK .CF
NTR .RO.
RETGEN .SA
SEEK .RO
NTR .SA
SEEK .CM
SEEK SA
RETCEN .RO
TOTHL DIRECTORY ENTP!ES SHOWN : 009,$0'
:1

DRIVE : I DISK I.D. : GRL
LTE ,CF
FLARE .SA
VARLIST ,SA
ETSG ,Cm
PULSEJ ,CM
PULSEJ .RO
ETSG .RO
LPJ ,CF
ETSG .SA
FLARE SCl
PULSEJ ,SA
FLARE .RO
LFLR CF
TOTAL DIRECTOFY ENTRIES SHOWN : O1:3,." fl

:I
DRIVE : I DISK I.D. 2 NONAME
F3 .S8
F4 .SA
F5 .SA
REASIC ,Cm
DCBSIM .SA
DCBSIM .LO
FTNLBX .RO
DCBSIM .LX
DCBSIM ,CM
Fl .LX
Fl ,LO
Fl .SA
F2 sA
TOTAL DIRECTORY ENTRTES SHOWN : Ot:.. ,"D
:I

DRIVE : I DISK I.D. : ET2
FLARE ,SA
LTE ,CF
VARLIST ,SA
PULSEJ ,CM
ETSG .Ct1
PULSEJ ,RO
ETSG RG
LPJ .CF
ETSG .SA
PULSEJ .SA
FL-HkE . "I
FL.i - . '
LFLR ,CF
TOTAL DIRECTORY ENTRIES SHOWN I 013/$D

A2111.6



:1

DRIVE 1 DISK I.D. : ETSGDPO
ETSG .Cm
PULSEJ .CM
DCON .SA
DELL .SA
ETARb .CM
DRECT .SA
F .SA
DSKR .SA
MJSTARG .SA
RUNETSG .CM

DROS .SA
LI .SA
DTRI .SA
DPLUM .SA
FLARE .CM
SSSS .SA
SEEK .'M
RUNETSG .cA
TOTAL DIRECTORY ENTRIES SHOWN 0 O18/$12

:1
DRIVE : I DISK I.D. z SDBRSIC
SDASM .CM
SDBCOM .CH
TMTEST .8A
TEST BA
TEST .LX
RUNROS .BA
SDEDIT .CM
SDRUN .CM
TOTAL DIRECTORY ENTRIES SHOWN : 008/$08

:I
DRIVE : I DI$IM I.D. : SYSTEM
KATE .LO
Pt .SA
SEEKER .SA
DUBLIN .S
P2 SA
PROMPROG.CM
P3 SR
TSI SA
TOTAL DIRECTORY ENTRIES SHOWN 0 O08'$08

:I
DRIVE : I DISK I.D. : TARGET
C.

TAE:ASIC *CM

PLUM .SR
TOTAL DIRECTOkY ENTRIES SHOWN a 004'$04

AXII,7 



DRIVE I $ DISK I.b. : ET2
PI :F SA
LTG CF
ETARG Ct
ASPGEH F0
ETARG P0.
ETARG SA
ASPGEN SA
RPICT . ':.
TOTAL DIRECTO'Y ENTPIES SHOWN • 008.$08

:1
DRIVE 1 DISK ID. : NONRME
F3 .SR
F4 '-SR
F5 .SR
ABRSIC .CM
FTNLBX ,RO
Fl .LX
Fl ,LO
Fl .Ss
F2 .SA
TOTRL DIRECTORY ENTRIES SHOWN : 009/$09

Ahuh .8



DISTRIBUTION

No. of
Copies

TIT Research Institute
ATTN: GACIAC 1
10 West 35th Street
Chicago, IL, 60616

DRSMI-LP, Mr. Voigt 1
-RD Dr. Hallum 10

-RPR 15
-RPT, Record Copy 1

Reference Copy 1



,ATE

LMED

i

r JijW ., .


